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Abstract

This thesis is concerned with analysis of digital video through discontinuity detection. A

discontinuity here is a sudden change that corresponds to some meaningful event in the video

content.

The paradigm of discontinuity-based analysis is applied within three distinct contexts. Firstly,

the problem of shot-change detection is explored. This amounts to the detection of signal-level

discontinuities. An extensive review and bibliography of existing methods proposed for shot

change detection are presented.

The next area of activity focuses on discontinuities as events, specifically in snooker video.

It is described how many of the significant events within televised snooker play can be detected

by targeted discontinuity detection, exploiting the characteristics of sports footage. Techniques

for detecting ball pots and near misses, for summarising the episodes of play, and for tracking

individual balls are described.

Finally, the detection of discontinuities in local motion is examined. A number of methods

for the description of local motion in video are evaluated. The detection of extreme values in

these descriptions is established as a powerful means for edit point detection in dance video. As

part of this work, a Bayesian video segmentation algorithm is designed which incorporates new

refinements for maintaining temporal coherence in the segmentation over motion discontinuities.

Successful edit point detection in dance video is shown to enable a number of novel ap-

plications, including the resynchronisation of the dance video to a new music signal. A DVD

demonstrating some results of this technique is included.
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1
Introduction

The digital video revolution began in earnest with the introduction of the DVD format in the

mid-1990s. Since that time, vast quantities of digital video have been produced, through the

increasing use of digital cinema technology in feature film production, the pervasive adoption of

the DVD format for consumer video cameras, and the digitisation of film material for re-release

in DVD and HD-DVD / Blu-Ray form.

Tools for manipulating digital video are thus in continuously increasing demand. A number

of these software tools for video manipulation are available, and the capacity of these tools

for digital video editing is increasing rapidly in line with the ever-expanding power of modern

computer systems. However, the nature of the operations which are facilitated by these systems

has remained essentially static, being limited to operations at the frame level. Manipulation

using higher level concepts, such as shots, scene settings, and story arcs, is not available because

the content of the video is opaque within these systems. The development of content-aware

systems to address this semantic gap is therefore an area of considerable research activity.

This thesis approaches content analysis through discontinuities. A discontinuity here is a

sudden change that corresponds to some meaningful event in the video content. This paradigm

of discontinuity-based analysis is applied within three distinct contexts. Firstly, the problem of

shot-change detection is explored. This amounts to the detection of signal-level discontinuities.

The next area of activity focuses on discontinuities as events, specifically in snooker video. Here

it is described how many of the significant events within televised snooker play can be detected

by targeted discontinuity detection, exploiting the characteristics of sports footage. Thirdly, the

detection of discontinuities in local motion is examined. It is shown that convincing analyses of

1
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dance video can be created by exploiting these methods.

In each application area, the approach adopted is the extraction of a targeted description

of the material, followed by the detection of discontinuities in this description. In shot change

detection, the video is described in terms of frame-to-frame similarity; in snooker, the description

targets the appearance of the table pocket areas and the ball tracks; and in dance video, the

motion characteristics of the foreground region are extracted. In each case, discontinuities in the

description of the media are found to correspond to time-points of interest in the video. This

approach is applied successfully to feature extraction across a range of semantic levels: low-level

in the case of shot changes, an intermediate level in the case of dance footage, and at a high

semantic level in the case of snooker video.

1.1 Thesis outline

The remainder of this thesis is organised as follows.

Chapter 2: Image Sequence Modelling

This chapter describes the key ideas underpinning image sequence modelling, outlining the main

approaches to global motion estimation, local motion estimation, and video segmentation. A

new technique for detecting and recovering from global motion inaccuracies in ‘simple’ scenes is

proposed. ‘Simple’ here refers to scenes with a well-contained foreground and a near-homogenous

background; counter-intuitively, global motion estimation is particularly difficult in such video.

Chapter 3: Video Shot Change Detection: A Review

Here the problem of shot change detection in video is described and analysed in some depth.

An extensive review and bibliography of the methods proposed for shot change detection are

presented.

Chapter 4: New Approaches to Shot Change Detection

In this chapter, two new contributions to the problem of shot change detection are presented.

The first is an approach to cut detection that performs well even in very difficult material. The

second is a new dissolve detection scheme based on explicit modelling of the dissolve process.

Both issues are considered as Bayesian classification problems.

Chapter 5: Detecting Snooker Events via Discontinuities

The work discussed here constitutes a number of tools facilitating the analysis of broadcast

snooker video. It is shown how analysis can be directed towards the most salient areas in the

video (the pockets and the balls), and the detection of events in these regions is constructed
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in terms of discontinuity detection. This chapter also introduces the use of Motion History

Image (MHI) for summarisation of sports events, here snooker shots.

Chapter 6: Low-level Edit Point Detection

This chapter introduces the problem of edit point detection in dance video. An extensive analysis

of various low-level approaches to edit point detection is presented, targeting several different

descriptors of the motion content of the video. The chapter concludes with a probabilistic

framework for fusion of these different descriptors for edit point detection.

Chapter 7: Segmentation For Edit Point Detection

In this chapter, a Bayesian video segmentation system is developed, designed for application to

edit point detection in dance video. This application requires strong temporal coherence in the

segmentation, particularly at motion discontinuities, and the novel contributions of this work

are directed at these aspects.

Chapter 8: Applications of Edit Point Detection

Here three applications of edit point detection in dance video are described: interactive edit point

browsing, dance phrase summarisation; and resynchronisation of dance video to new music.

Chapter 9: Conclusions

The final chapter assesses the contributions of this thesis and outlines some directions for future

work.

1.2 Contributions of this thesis

The new work described in this thesis can be summarised by the following list:� A means for detecting and recovering from inaccuracies in global motion estimation in

simple scenes� Refinements to video cut detection particularly appropriate for very difficult sequences� A new technique for model-based dissolve transition detection� An algorithm for detecting full-table views in snooker footage� A perspective-invariant approach to recovering in-game geometry from snooker and tennis

video

1.3. Publications 4� An algorithm for detecting and masking out the player, where the player occludes the

table, in snooker� The use of the MHI for summarisation of sports events� A method for the detection of ‘ball pot’ and ‘near miss’ events in snooker based on moni-

toring of the pockets� A colour based particle filter approach to ball tracking, with applications to event detection� The use of motion detection, foreground bounding box analysis, vector field analysis,

motion blur analysis, and sound track analysis for the detection of edit points in dance

video� Refinements to video segmentation incorporating the use of the Earth Mover’s Distance

(EMD) for colour modelling, polar co-ordinates for vector modelling, and motion histories

for temporal coherence� The use of edit points in dance video for interactive keyframe selection and dance phrase

summarisation� The exploitation of edit points in dance video and music beat detection for real-time

resynchronisation of dance with arbitrary music

1.3 Publications

Portions of the work described in this thesis have appeared in the following publications:� “Content Based Analysis for Video from Snooker Broadcasts” by Hugh Denman, Niall

Rea, and Anil Kokaram, in Proceedings of the International Conference on Image and

Video Retrieval 2002 (CIVR ’02), Lecture Notes in Computer Science, vol. 2383, pages

186–193, London, July 2002.� “Content-based analysis for video from snooker broadcasts” by Hugh Denman, Niall Rea,

and Anil Kokaram, in Journal of Computer Vision and Image Understanding - Special

Issue on Video Retrieval and Summarization, volume 92, issues 2-3 (November - December

2003), pages 141-306.� “A Multiscale Approach to Shot Change Detection” by Hugh Denman and Anil Kokaram,

in Proceedings of the Irish Machine Vision and Image Processing Conference (IMVIP ’04),

pages 19–25, Dublin, September 2004.� “Gradient Based Dominant Motion Estimation with Integral Projections for Real Time

Video Stabilisation” by Andrew Crawford, Hugh Denman, Francis Kelly, Francois Pitié and
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Anil Kokaram, in Proceedings of the IEEE International Conference on Image Processing

(ICIP’04), volume V, pages 3371-3374, Singapore, October 2004.� “Exploiting temporal discontinuities for event detection and manipulation in video streams”

by Hugh Denman, Erika Doyle, Anil Kokaram, Daire Lennon, Rozenn Dahyot and Ray

Fuller, in MIR ’05: Proceedings of the 7th ACM SIGMM International Workshop on Mul-

timedia Information Retrieval, pages 183–192, New York, October 2005.� “Dancing to a Different Tune” by Hugh Denman and Anil Kokaram, in Proceedings of

the IEE European Conference on Visual Media Production (CVMP’05), pages 147–153,

London, November 2005.

2
Image Sequence Modelling

In this chapter the imaging process is introduced and an overview of image sequence modelling

techniques is presented. A new technique for refining global motion estimation in sequences

with low background detail is described. For additional material on the essential principles of

digital image processing, the reader is referred to the excellent book by Tekalp [298].

2.1 Image Sequence Modelling Overview

Figure 2.1 illustrates the three essential stages in the video process. A camera or other imaging

device is directed towards a three-dimensional scene in the real world, and captures a two-

dimensional projection of this scene. These images are recorded in succession to some storage

Scene Imaging System Viewer

FrameStore

Figure 2.1: Stages in an imaging system

6
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medium. Finally, the images are presented to a viewer through some display technology.

To apply digital signal processing techniques to film, it is necessary that the film be available

in digital format. Modern video and film cameras record directly to digital, typically through

the use of a charge-coupled device, or CCD, as the light sensor. Early video cameras record

by analogue means, such as onto magnetic tape or optical film. This film can subsequently be

digitised in a separate stage. In either case, the result is a digital image sequence.

A digital image sequence is an ordered set of N rectangular arrays {In(x) : 0 ≤ n < N}.
Here n is the temporal index of the image in a sequence, and x = (r, c)T denotes the pixel site at

row r and column c of the image. For intensity images, In(x) is scalar valued; for colour images,

In(x) is a vector indicating intensity and colour—for example, a three-tuple representing red,

green, and blue light intensities at the site.

For an image sequence arising from the continuous operation of one camera, changes in pixel

intensity are caused by four distinct processes. First, changes in the orientation and position of

the camera change which portion of the scene is depicted; this is the camera motion process.

To an observer, the scene background appears to move relative to the image space. As this

perceived motion is coherent across the entire image plane, it is termed global motion.

Secondly, individual objects in the field of view of the camera may themselves move; this is

designated object motion, or local motion. This motion may be translational or rotational, and

can include changes in size and self-occlusion.

Thirdly, changes in the illumination incident on the depicted scene will affect the readout

values of the image acquisition device.

Lastly, flaws and aberrations in the acquisition device, the digitisation process, or arising

during storage of the sequence, introduce noise to the image sequence.

An image sequence model is a set of hypotheses concerning the nature of the material de-

picted. From these hypotheses, constraints can be derived. These constraints facilitate analysis

of the variations at pixel sites over time in terms of the four processes identified above.

2.1.1 Image-centric sequence modelling

The essential hypothesis underlying image-centric sequence modelling is that the images depict

objects that are much larger than the pixel size. Thus adjacent pixels with similar intensity

values are likely to depict the same object.

Many image processing applications rely on constraints introduced by this hypothesis. Spa-

tial noise reduction, for example, exploits the constraint that object surfaces should be smooth.

Motion estimation generally relies on the constraint that adjacent pixels move identically, as

described below.

Motion estimation in image-centric sequence modelling was for many years centred on a

model in which motion in the sequence is modelled as deformations of a rubber sheet covering

the frame area. While this model has proven effective for simple sequences, it fails to account

2.1. Image Sequence Modelling Overview 8

for the effects of occlusion and revealing. The layer model proposed by Wang and Adelson [321]

supercedes this rubber sheet model in these respects.

The directly perceived motion in a sequence is due to the displacement of spatial gradients.

The motion of the gradients is termed optic flow. Motion that does not result in the displacement

of gradients cannot readily be extracted from the sequence. For example, if a camera is directed

at a rotating smooth sphere under constant illumination, no optic flow results [149]. Optic flow

estimation is then the analysis of the motion through gradients.

2.1.2 Scene-centric sequence modelling

The hypotheses underlying scene-centric sequence modelling are in fact a description of the

imaging process itself. In other words, scene-centric sequence modelling treats video explicitly

as the perspective projection of three-dimensional objects onto the imaging plane. The goal is to

recover as much information as possible about the configuration of the objects being projected,

in terms of their relative position and size, the lighting conditions obtaining, and their three-

dimensional motion. Optic flow estimation is an essential precursor to scene-centric modelling.

The difficulty with this approach is that deriving constraints on the image sequence is very

difficult with a scene-centric model. For example, Nagel in [231] illustrates the ambiguity be-

tween changes in object depth (motion perpendicular to the image plane) and changes in object

size. Further ambiguities arise from illumination effects: changes in the light source and shadows

can result in intensity changes that are difficult to distinguish from motion. Even assuming that

object size and illumination are constant, recovering the three-dimensional scene from the optic

flow involves inherent ambiguities [3, 295,338].

The scene-centric approach has been more common in the computer vision community than

in signal processing, and has resulted in a very considerable body of research [110,138].

2.1.3 Affective sequence modelling

Inasmuch as scene centric modelling considers real world objects rather than patches of pixels, it

is a higher level approach than image-centric modelling. Essentially, scene-centric modelling en-

compasses both the scene and imaging stages shown in figure 2.1, while image-centric modelling

is only concerned with the imaging stage. The next level of video modelling, then, encompasses

all three stages, including the human observer.

This affective media processing [136, 331] tries to infer the emotional content of a signal

and its likely effect on a human observer, and is still very much in its infancy. This aspect

of information processing in general was identified by Warren Weaver as early as 1949 [272].

He suggested that all information processing operates at a technical, semantic, or influential

level. In the case of video processing, as in media processing in general, present-day research

is principally at some intermediate stage between the technical and semantic levels. As more

sophisticated models are introduced to account for more of a signal’s meaning in relation to a
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human observer, the scope and relevance of computer-assisted media processing will increase to

encompass these affective aspects.

2.2 Global Motion

A marked distinction is drawn in the literature on motion estimation between global motion

estimation and local motion estimation [298]. In practical terms, this distinction is well founded.

However, from a theoretical standpoint, one is always fundamentally concerned with an image

equation of the form

In(x) = In−1(F(x, θ)) + ε(x) (2.1)

The vector function F(x) represents co-ordinate transformation according to the motion model,

parameterized by θ. The term ε(x) represents errors arising from noise in the image sequence, or

due to model inadequacy. In this section, motion models F(x,Θ) suitable for global motion are

described, along with the means of estimating, or fitting, these models to the data. Section 2.4

section describes local motion models and estimation techniques.

2.2.1 Global motion models

Global motion estimation methods attempt to fit a single, low-order motion model to the image

sequence contents as a whole. An accessible discussion of global motion models and their rep-

resentational capacities has been presented by Mann and Picard [213]. The simplest choice for

the form of F is the translational model, Θ = (dx, dy), F(x, θ) = x + [dx, dy]T . The commonly

used affine model is given by Θ = (A,d), F(x, θ) = Ax + d. Here, A is a 2 × 2 transformation

matrix accounting for scaling, rotation, and shear; d = [dx, dy]T as before. This is the model

used throughout this thesis for global motion estimation. Higher-order models, including bilin-

ear and biquadratic models, can also be applied. These models are linear in that they can be

written in the form

F(x,Θ) = B(x)Θ (2.2)

where B(x) is a matrix-valued function of x. For example, in the case of the affine model,

B(x) =

[

x1 x2 1 0 0 0

0 0 0 x1 x2 1

]

Θ = [a1, a2, d1, a3, a4, d2]
T (2.3)

where ai, di, and xi are the components of A, d, and x.

The eight-parameter projective transform takes

F(x,Θ) =
Ax + d

cTx + 1
(2.4)
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This model can exactly account for all changes due to camera motion, assuming that the scene

contents are effectively planar (the zero-parallax assumption). However, this is a non-linear

transform1, and as such more difficult to solve.

2.2.2 Global motion estimation

Once a model for the global motion has been chosen, it is necessary to estimate the parameters

that best account for the observed image data. Global motion estimation is normally carried

out between a pair of frames In, In−1. The error associated with some parameter values Θ′ is

assessed via the Displaced Frame Difference (DFD)

DFDΘ(x) = In(x) − In−1(F(x,Θ)) (2.5)

In general parameter estimation terminology, the DFD measures the residuals for parameters

Θ. The aim then is to find the optimal parameters Θ̂ minimising some function of the DFD. A

least squares solution, for example, entails solving

Θ̂ = arg min
Θ

∑

x

DFD2
Θ(x) (2.6)

DFD(x) will have a high value if the parameters Θ̂ do not describe the motion at site x.

For inaccurate parameters, this will be over much of the image. However, at sites x containing

local motion, DFD(x) will take a high value for all parameter values. Thus the minimisation

technique adopted should be robust against outliers.

2.2.3 Robust estimation approaches

Odobez and Bouthemy [244] applied an M-estimation approach to robust estimation for global

motion parameters. In M-estimation, the aim is to solve

Θ̂ = arg min
Θ

∑

x

ρ (DFDΘ(x)) (2.7)

where rather than squaring the DFD, a function ρ(.) is used to limit the influence of large

residuals on the optimal parameters. This formulation is equivalent to solving

Θ̂ = arg min
Θ

∑

x

w(x)DFD2
Θ(x) (2.8)

for suitable weights at each site [351].

1In the sense that x
′ = F(x,Θ) is related to x by

[

x′

1

x′

2

]

=

[

x1 x2 1 0 0 0 −x1x
′

1 −x2x
′

1

0 0 0 x1 x2 1 −x1x
′

2 −x2x
′

2

]

· [a1, a2, d1, a3, a4, d2, c1, c2]
T

with x
′ appearing on both sides of the equation.
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The optimal parameters Θ̂ are determined using an iterative scheme. Two factors motivate

the iterative approach. Firstly, a Taylor series expansion must be used to linearise DFD(x) with

respect to Θ around some initial estimate Θ0. Thus, for some update u, the weighted DFD at

x, WDFDΘ0+u(x), is found by

WDFDΘ0+u(x) = w(x)
[
In(x) − In−1(B(x)Θ0)

]
−∇In−1(B(x)Θ0)B(x)u + ε̂(x) (2.9)

where ε̂(x) represents both the higher-order terms of the series and the error term. The Taylor

series expansion is only valid for small updates u, and as such is applied iteratively until some

convergence criterion is met (typically a threshold on the magnitude of u). This also suggests

that a multi-resolution scheme be employed, as described in section 2.6.

The second reason that iterative estimation is used pertains to the choice of weights. The

weight at a site x should be high if x is subject to global motion, and low otherwise. Thus, the

ideal weights can only be determined where the global motion is already known. The weights

and parameters are therefore estimated iteratively, resulting in an Iteratively Reweighted Least

Squares (IRLS) estimation scheme.

At each iteration i, the value of u for which

∂WDFD(x)

∂u
= 0 (2.10)

is found. This value is given by

û = [GTWi−1G]−1GTWi−1z (2.11)

Here G is the matrix of gradient values {∇In−1(B(x)Θi−1)B(x)}x, W i is the vector containing

the weights over the entire image, and z is the vector of residuals {Inx − In−1(B(x)Θi−1}x.

Given the parameters Θi at iteration i, the weights W i can then be found by

w(x) =
ρ(DFDΘi(x))

DFDΘi(x)
(2.12)

where various choices for ρ can be used [351]. In [244], Tukey’s biweight function [156] is used

for ρ.

Dufaux and Konrad [93] also use M-estimation, with the function ρ taken as

ρ(e) =

{

e2 if |e| < t

0 otherwise
(2.13)

The threshold t is chosen at each iteration so as to exclude the top 10% of absolute DFD values.

This is equivalent to using binary valued weights to exclude the influence of the sites having the

largest residuals. Their work targets the eight-parameter projective transform, and therefore

uses a gradient descent method to find the minimum [258].
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2.2.4 Wiener solution approach

Kokaram and Delacourt presented a Wiener-based alternative for finding the parameter up-

date [182]. In this approach,

û = [GTWG + µwI]
−1GTWz (2.14)

This introduces the regularising term µw =
(
σ2
ee/σ

2
uu

)
, where σ2

ee is the variance of the residuals

and σ2
uu is the variance of the estimate for û. In practice, µw = |Wz|λ∧λ∨ , where λ∧

λ∨
is the

condition number of [GTWG+µwI]. This regularisation limits the update where the matrix is

ill-conditioned or where the DFD takes large values. Binary weights are used in [182], although

other weighting functions could be used.

2.2.5 Fourier domain approaches

The normalised cross-correlation of two images can be efficiently computed in the spatial fre-

quency domain using the Fast Fourier Transform (FFT). This suggests an efficient approach for

computing translational displacement between two images. Let In and In−1 be two frames that

differ only by a displacement d = [dx, dy] such that

In(x, y) = In−1(x+ dx, y + dy) (2.15)

The corresponding Fourier transforms, Fn and Fn−1, are related by

Fn(u, v) = ej2π(udx+vdy)Fn−1(u, v) (2.16)

The cross correlation function between the two frames is defined as

cn,n−1(x, y) = In(x, y) ~ In−1(x, y) (2.17)

where ~ denotes 2-D convolution. Moving into the Fourier domain results in the complex-valued

cross-power spectrum expression

Cn,n−1(u, v) = Fn(u, v)F
∗
n−1(u, v) (2.18)

where F ∗ is the complex conjugate of F . Normalising Cn,n−1(u, v) by its magnitude gives the

phase of the cross-power spectrum:

C̃n,n−1(u, v) =
Fn(u, v)F

∗
n−1(u, v)

|Fn(u, v)F ∗
n−1(u, v)|

= e−j2π(udx+vdy)

(2.19)

Taking the inverse Fourier transform of C̃n,n−1(u, v) yields the phase-correlation function

c̃n,n−1(x, y) = δ(x− dx, y − dy) (2.20)
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which consists of an impulse centered on the location [dx, dy], the required displacement.

The phase correlation method for translation motion, then, involves evaluating (2.19) and

taking the inverse Fourier transform. This yields a phase correlation surface; the location of the

maximum in this surface corresponds to the translational motion. Sub-pixel accuracy can be

obtained with suitable interpolation.

Phase correlation for translational motion was presented by Kuglin and Hines in 1975 [186],

for registration of astronomical images. In 1993, Bracewell published the affine theorem for

the two-dimensional Fourier transform [44]; a number of researchers then developed Fourier-

domain systems for affine image registration [209, 261] and global motion estimation [147, 188].

An accessible presentation of how Fourier domain methods can be used for affine global motion

estimation appears in [167, appendix A].

2.2.6 Integral projections

The vertical and horizontal integral projections Ivn, I
h
n of an image In are the vectors formed by

summing along the rows (respectively columns) of the image:

Ivn =
∑

x

In(x, y) (2.21)

Ihn =
∑

y

In(x, y) (2.22)

The use of integral projections was originally proposed by Lee and Park in 1987 for block

matching in local motion estimation [191], described further below. In 1999, Milanfar showed

that motion estimation applied to these two one dimensional vectors reveals the global motion of

the image itself [222]. This work considered integral projections as a form of Radon transform,

and established the theoretical soundness of the approach on this basis; the affine motion model

is used. A differently motivated analysis appears in [71], targeting translation motion. The

appeal of this approach lies in its simplicity of implementation and suitability for real-time

applications.

2.3 Refined Global Motion Estimation for Simple Scenes

As described above, motion in an image sequence can only be directly estimated in picture

areas containing edge information. This can lead to difficulties in global motion estimation

for sequences with little detail in the background. This situation is common in videos depicting

theatrical dance performance, for example, where a dance is performed in front of a flat backdrop.

These can be considered ‘simple’ scenes, in the sense that there is a well-defined foreground actor

and a simple, flat background. In this section, some examples of this problem are illustrated, and

a new approach for improving Global Motion Estimation (GME) performance is described. The

global motion estimation algorithm described by Odobez and Bouthemy in [244] is used. The
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(a) Video frame (b) Result of inaccurate GME (c) Result of accurate GME

Figure 2.2: Improvement in global motion estimation wrought by excluding the foreground

region. The DFD after global motion compensation is superimposed in red in (b) and (c), along

with its bounding box.

global motion model here is affine, with multiplicative parameter A and translation parameter

d.

2.3.1 Diagnosing GME Failure

As described above, the DFD at frame n after global motion estimation is the difference between

compensated frame n− 1 and frame n:

DFD(x)n = In(x) − In−1(Ax + d) (2.23)

Where GME has been successful, all the energy in the DFD will correspond to foreground

regions of the image sequence. Figure 2.2 shows DFDs for successful and unsuccessful motion

estimation. Figure 2.2 (a) shows a frame from the greenDancer sequence. There is no camera

motion at this frame of the sequence. Image (b) shows the DFD energy and bounding box in

red, after inaccurate global motion estimation. The DFD bounding box is the smallest rectangle

containing all non-zero elements of the DFD image. Image (c) shows the DFD energy and

bounding box after successful global motion estimation, using the technique described here.

Where GME is accurate, the DFD bounding box corresponds to the foreground region of the

frame.

Although the region of the frame corresponding to the foreground cannot be known in

advance, it can be assumed that GME is accurate more often than not, and so the DFD bounding

box usually contains the foreground motion. This assumption is generally justified, particularly

at the start of a sequence as the subject begins to move. Any sudden change in the DFD

bounding box can then be interpreted as an indication of GME failure.

The bounding box at frame n is defined by four components, for its top, bottom, left, and

right locations: BBn = [BBtn,BBbn,BBln,BBrn]. Given the bounding boxes of the previous

k frames, a Gaussian distribution can be proposed to describe the expected location of the
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bounding box in the current frame. Hence BBtn ∼ N (BBt , σ2
t ) and similarly for the other

bounding box components. These components can be estimated using the k measurements from

the previous frames by

BBt =
1

k

n−1∑

j=n−k
BBtj (2.24)

σ2
t =

1

k

n−1∑

j=n−k
(BBtj − BBt)2 (2.25)

GME failure is then diagnosed if any component k lies outside the 99% confidence interval for

the associated Gaussian, i.e. where
∣
∣BBk −BBk

∣
∣ > 2.576σk (2.26)

2.3.2 Recovering from GME failure

Once GME failure has been diagnosed at a particular frame, various methods to improve the

estimate can be employed. The simplest approach is to exploit the fact that camera motion is

temporally smooth in most cases, by proposing the GME parameters from the previous frame

as candidate parameters for the frame causing difficulty. These are designated θ2. A second

candidate set of parameters can be generated by performing GME a second time, but excluding

the region inside the DFD bounding box of the previous frame from the estimation. This prevents

the foreground motion from affecting the global motion estimate. The resulting parameters are

designated θ3. A third, related candidate is generated by finding the median of the last N = 25

DFD bounding boxes, designated the median foreground rectangle. GME is then performed

with this region excluded from estimation, and the parameters found are designated θ4.

In cases where GME failure has been diagnosed, there are thus four candidate sets of

parameters–the original parameters and the three alternatives described above. These are des-

ignated θi, with i ∈ {1 . . . 4}. Each of these parameter sets is used to generate a DFD, and

the bounding box of each DFD image is found. The set of GME parameters resulting in the

DFD bounding box having the closest match to the historic distribution is selected as the best

estimate for the current frame. Specifically, the selected parameters for frame n, θn = {A,d},
are found by

θn = θı̂, where ı̂ = argmax
i∈{1...4}

∑

k∈{t,b,l,r}
exp

(
(BBk in − BBk)2

σk

)

(2.27)

Here BBk in is bounding box component k resulting from candidate parameters θi.

The procedure is illustrated in flowchart form in figure 2.3.

2.3.3 Results and Assessment

Ground-truth global motion data is not available for the sequences analysed here, and therefore

a complete quantitative assessment of the improvements introduced by this technique is not
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Figure 2.3: The GME refinement algorithm. ‘BB’ stands for the DFD bounding box. The

‘BB match’ refers to the similarity between the current DFD bounding box and those found in

previous frames.

possible. Figure 2.4 (a) shows the location of the bottom edge of the DFD bounding box over 80

frames of the greenDancer sequence, identified by unmodified GME and also using the technique

described here. The refinement technique results in a considerably smoother signal, indicating

that GME performance has been improved.

Figure 2.4 (b) shows how often each set of global motion parameters was selected when

the refinement technique was applied to the 1900 frame greenDancer sequence. The initial

parameters, θ1, were found to be a poor match to the historic distribution in 699 cases. In

445 cases, the θ1 parameters resulted in the best fit of all candidate parameters. This suggests



2.4. Local Motion Estimation 17

120 140 160 180 200
0

50

100

150

200

250

300

Frame

R
ow

Without Refinement
With Refinement

(a) Location of DFD bounding box bottom edge using

unrefined GME and the technique described here. The

plot covers 80 frames from the greenDancer sequence.

0

100

200

300

400

500

n

θ1 θ3 θ2 θ4

(b) Selection counts of different candidate parameters.

N=699.

Figure 2.4

that the refinement is being invoked somewhat more than necessary, and that a looser fit to

the historic distribution should be considered a match. Of the three alternative candidate

parameters, θ3 most often results in the closest-matching bounding box, but each alternative is

selected for some frames.

Video material illustrating the application of this approach to a number of sequences is

provided in the accompanying DVD. These videos demonstrate that the technique results in a

considerable improvement in GME accuracy for numerous frames. It is noted that this technique

should not be incorporated into GME systems by default, but rather selected by an operator

for application to suitable sequences.

2.4 Local Motion Estimation

The problem of local motion estimation in image sequences has been the target of consider-

able research effort over a number of decades. A brief overview of the principles and principal

techniques is presented here. Comprehensive review material is available in a number of publi-

cations [94,214,230,288,298,314].

2.4.1 Problem statement

In local motion estimation, the aim is to describe the motion of each region of the image indi-

vidually. The equation for the image motion remains In(x) = In−1(F(x,Θ)), but the motion
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model F(x,Θ) varies with the site x. The most commonly used formulation is

F(x,Θ) = x + dn,n−1(x) (2.28)

Here dn,n−1(x) is a vector field describing the translational motion at each pixel. The effects of

zooming and rotation can be approximated as translational motion provided the motion between

frames is small.

Numerous approaches to fitting a model of the form (2.28) to an image sequence have been

developed, and will be outlined here. It is first noted that (2.28) fails to account for the effects of

occlusion and revealing in the image sequence. These effects are found in all sequences containing

motion: as any object moves, it will occlude some areas of the previous frame and reveal others.

Modelling these effects requires extensions to the motion model that are not described here;

approaches addressing this issue have been presented in [31,160,179,184,286].

Consider motion estimation in video having dimensions M ×N pixels. There are then MN

equations of the form

In(x) = In−1(x + dn,n−1(x)) (2.29)

and each equation is to be solved for the two components of d(x). There are thus twice as

many unknowns as there are equations, and so the problem is underconstrained. In fact, at

each site x, only the motion prependicular to the gradient at x can be estimated, known as the

‘normal flow’ [298, pp. 81-92]. This difficulty is known as the aperture effect, because in effect

the aperture, or window, used for motion estimation is too small.

The most common way of dealing with this difficulty is to assume that the motion is constant

over some window larger than one pixel, typically a block B pixels on a side. Motion estimation

within the block is then described by B2 equations with two unknowns in total, and the problem

is no longer underconstrained. Motion estimation over blocks of pixels also improves resilience

to noise in the image sequence. The aperture effect can still arise where the block size is small

relative to object size. Using a larger block size reduces the effect of this problem, but for large

block sizes the assumption that the motion within the block is constant is less likely to hold.

2.4.2 Correspondence matching

Block matching is a robust, readily implemented technique for motion estimation. For each

B × B block b in frame n, the most similar B × B block in frame n − 1 is found. The motion

vector assigned to the block in frame n is then the displacement to the matched block.

Block similarity is measured by examination of the DFD over the block. The most commonly

used measures are the Mean Squared Error (MSE) and Mean Absolute Difference (MAD):

MSE(b,d) =
1

B2

∑

x∈B(b)

(DFD(x,d))2 (2.30)

MAD(b,d) =
1

B2

∑

x∈B(b)

|DFD(x,d)| (2.31)
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where B is the set of sites x in block b, and DFD(x,d) = In(x) − In−1(x + d). The vector d

resulting in the lowest value of the error measure is assigned to block b. For translational motion

under constant illumination in a sequence uncorrupted by noise, the correct vector will result in

a zero block error.

A block matching scheme requires that two parameters be specified: the search width, and

the search resolution. The search width limits the maximum displacement magnitude that can

be estimated, while the search resolution limits the maximum obtainable accuracy. Increasing

the search width or search resolution results in a considerable increase in computational cost.

For a search width ±w pixels in both the horizontal and vertical directions, with a resolution

of 1
r pixels, block matching requires B2(2rw + 1)2 operations per block. Fractional accuracy

imposes an additional cost for interpolation of the target frame (frame n− 1).

Evaluating every candidate vector in the search area is known as Full Motion Search. A

number of alternative schemes aiming to reduce the amount of computation required for a

given search width and resolution have been presented. These include Three Step Search [177],

Cross Search [119], and the Successive Elimination Algorithm [199], amongst others [46, 346].

Although these approaches do offer considerable computational savings, they are not as reliable

as full motion search block matching.

Integral projections were described for global motion estimation above, but were originally

proposed for local motion estimation, by Lee and Park [191]. This approach reduces the com-

putational cost of block matching by making comparing blocks cheaper. Rather than compare

all B2 pixels across two blocks, the integral projections of the block are compared. Matching

block integral projections is shown to provide similar results to full block matching, at a cost of

only 2B operations per block comparison. This approach has been further developed by various

researchers [172,192].

2.4.3 Gradient-based methods

Block matching is effectively an exhaustive search approach to find the vector d minimising the

DFD at x. An alternative approach is to linearise the image model about d using a Taylor series

expansion, such that

In(x) = In−1(x) + dTn,n−1(x)∇In−1(x) + en(x) (2.32)

where ∇ is the two-dimensional gradient operator and en(x) accounts for both the higher order

terms in the Taylor series and any model error. Rearranging this equation yields

z(x) = dTn,n−1(x)∇In−1(x) + en(x) (2.33)

where z(x) = In(x)− In−1(x). This approach was described in 1976 by Cafforio and Rocca [50].

The Taylor series approximation for linearisation about d is only valid over small displace-

ments. To allow for this limitation, estimation of d is performed iteratively, with an update u
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applied at each step. This scheme can be applied to single pixels, where the inital estimate for

the displacement at each site is taken from the previous pixel in raster-scan order. Hence these

schemes are described as pel-recursive approaches. When estimation is performed at pixel level,

the aperture effect means that the update at each iteration will be always be perpendicular to

the image gradient. The use of the pel-recursive scheme, however, means that the scheme can

converge to the two-dimensional motion after a number of pixels have been processed.

The earliest of these pel-recursive schemes was presented by Netravali and Robbins [236].

Here the update for the displacement at x is found using a steepest-descent approach, yielding

di+1(x) = di(x) − εDFD(x,di)∇In−1(x − di) (2.34)

where the step size ε must be chosen. Walker and Rao then proposed an adaptive step size given

by

ε =
1

2||∇In−1(x− di)||2 (2.35)

This effectively reduces the step size in the neighborhood of large gradients, improving accuracy,

and increases the step size where the gradient is small, improving the speed of convergence.

Gradient-based motion estimation can also be applied to blocks of pixels, reducing the effect

of the aperture problem and imposing a stronger regularity constraint. The approach described

by Biemond et al.using Wiener estimation is the first example of this approach [27], being

essentially an extension of the Netravali-Robbins method applied to block motion in which the

error term en(x) is not discarded [298]. Instead, the error is assumed to be effectively Gaussian.

This facilitates Linear Minimum Mean Least Square Error (LMMSE) estimation of the update,

such that

di+1(x) = di(x) +
[
GTG + µI

]−1
GTz (2.36)

where G and z collect the gradient and image difference values for each pixel inside the block.

µ is a damping parameter given by σ2
ee

σ2
uu

; σ2
ee is the variance of the error values and σ2

uu is the

variance of the estimate for the update u = di+1(x) − di(x).

The damping parameter µ is designed to improve stability in the computation of
[
GTG

]−1
.

Errors in the motion estimation can nevertheless result when this matrix is very ill-conditioned.

This ill-conditioning can be measured by examining the ratio of the eigenvalues of the matrix, and

tailoring the update accordingly. This refinement has been explored by various researchers [40,

95]. Kokaram in [178] described a system in which

ui =

{

ᾱex if λx

λn
> τα

[
GTG + µI

]−1
GTz otherwise

(2.37)

µ = |z|λx
λy

ᾱ =
eTx
λx

GT z
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Here λx and λy are the largest and smallest eigenvalues of GTG, and ex is the eigenvector of

GTG corresponding to λx. α is a threshold on the conditioning of GTG. The idea here is that

where GTG is very ill-conditioned, the Martinez [214] solution is used; otherwise, the damping

parameter µ is found as described by Driessen et al. [90].

2.4.4 Transform domain methods

The use of the Fourier transform for global motion estimation was described above. This ap-

proach can also be applied to individual blocks in an image for local motion estimation. Jain

and Jain used this method in 1978 for analysis of images from radar [161]; it has also been used

in frame rate conversion for television [301] and in motion estimation for restoration [276]. The

complex wavelet transform (CWT) has also been used for motion estimation [212].

2.4.5 Bayesian methods

The approaches described above can be considered maximum likelihood methods, in that they

are entirely data driven. As such, they do not explicitly take into account prior intuitions

concerning the nature of motion fields. In particular, motion fields are generally piecewise

smooth, and this smoothness can be incorporated as a constraint to condition the estimate.

This incorporation of prior knowledge, combined with data-driven evaluation of the likelihood,

results in a Maximum a posteriori (MAP) method. This is distinct from the implicit smoothness

introduced by pel-recursive schemes or motion estimation over blocks.

The a posteriori probability of a motion field D is given by Bayes’ theorem

p(D|In−1, In) =
p(In|In−1,D)p(D)

p(In|In−1)
(2.38)

Here p(In|In−1,D) is the likelihood of the vector field D, and p(D) is the prior probability of

D (typically some measure of smoothness). The denominator of this expression describes the

marginal probability of In, and does not vary with D. Thus the MAP estimate of D is given by

D̂ = arg max
D

p(In|In−1,D)p(D) (2.39)

D here represents the entire flow field, and it is not generally feasible to maximise 2.39 over

a space of such large dimensionality. Therefore Bayesian schemes generally address flow field

smoothness at each site individually.

Maximising the a posteriori probability is equivalent to minimising the negative logarithm

of the probability, a quantity described as the energy of the flow field. The energies due to the

likelihood and prior may considered separately:

D̂ = arg min
D

L(D) + V (D) (2.40)

The likelihood energy L(D) is typically some DFD related measure such as the MSE. Thus

incorporating prior information is equivalent to adding some smoothness term to the error
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associated with a given vector. Conversely, any scheme in which a smoothness term is added

to the vector error can be described within the Bayesian framework. Kelly has described how

a number of estimation schemes, including the optical flow method of Horn and Schunck [148],

and the 3D recursive search block matching algorithm of de Haan et al. [76–78], can be unified

in the Bayesian framework in this manner [167].

More explicitly Bayesian methods incorporate iterative smoothing into the estimation of the

flow field. Konrad and Dubois employ stochastic relaxation techniques such as the Metropolis

algorithm and the Gibbs sampler [184]. Kelly has described motion smoothing using determinis-

tic methods such as Iterated Conditional Modes (ICM) and Belief Propagation [167]. Numerous

other variations on MAP estimation have been presented [2, 350].

The presence of moving objects in a scene introduces discontinuities in the optic flow field. If

the smoothness constraint is applied globally, then, the motion vectors at object boundaries be-

come blurred. Numerous researchers have investigated approaches to this problem—encouraging

piecewise smoothness as opposed to global smoothness [31,140,160]. Using the oriented smooth-

ness constraint, introduced by Nagel [232, 233], the optic flow field is smoothed perpendicular

to the image brightness gradient. Konrad and Dubois [184] and Heitz and Bouthemy [141] in-

troduced line fields for stochastic motion smoothing. A line field is a lattice in between pixel

sites controlling how much smoothness should be applied across adjacent pixels. These stochastic

techniques have a high computational cost. A number of researchers have recognised that dealing

with these motion discontinuities effectively requires some level of video segmentation—which is

itself often predicated on motion estimation. Thus motion estimation and video segmentation

are complementary problems [57,58,140,287].

2.5 Video Segmentation

Video segmentation is the problem of discovering a set of labels corresponding to each object in

an video, and assigning one of these labels to each pixel in each frame describing which object

that pixel depicts. A brief outline of some of the main methods is presented here; the review

article by Zhang and Lu [348] is recommended for further information.

2.5.1 Motion segmentation

Early approaches to the problem of video segmentation relied exclusively on motion features, and

as such were described as motion segmentation. The use of motion for segmentation is justified

by various findings in psychology. For example, the Gestalt psychologists realised that common

motion, or ‘common fate’, is one of the strongest cues for grouping in visual perception [323], and

more recently cognitive psychologists have shown that infants treat any surface that is cohesive,

bounded, and moves as a unit as a single object—ignoring shape, color, and texture [16,281,282].
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2.5.1.1 Dominant motion methods

A number of early motion segmentation techniques adopted a dominant motion approach [19,

157]. This is a recursive scheme relying on the assumption that where multiple motions are

present, one is the ‘dominant’ motion, in the sense that global estimation of motion over the

entire frame will result in a good estimate of this dominant motion. Those regions in the

image that obey this dominant motion can then be excluded from consideration, and estimation

applied to the remaining areas to find the next dominant motion. The procedure is recursively

applied until all of the frame is accounted for. These schemes are unreliable in processing video

containing a number of comparably dominant motions.

2.5.1.2 Expectation-Maximization methods

Dominant motion analysis is a global, or top-down, approach to motion segmentation, and

has been largely superseded by a local, bottom-up approach in which small areas undergoing

similar motion are merged. This approach is exemplified by the seminal work by Wang and

Adelson [320, 321], which also introduced the layer model underpinning much of the work in

motion segmentation. Here, rather than considering a single, piecewise smooth flow field, the

video sequence is considered as made up of occluding layers. Discontinuities in the motion field

arise as the result of occlusion between layers. Thus explicit piecewise smoothness need not be

imposed through regularisation [118,255] or robust estimation [30,73,82]; rather globally smooth

motion is estimated for each layer separately.

In [320], the motion of each layer is described using an affine model. In outline, the scheme

is as follows: First, optic flow estimation is carried out. The first frame is divided into blocks

to provide an initial set of regions. The frame is then segmented using a number of iterations

of the following steps:

1. An affine model is fitted to the motion vectors within each region, using linear least squares.

2. Adaptive k-means clustering is applied to merge similar motion models.

3. The regions are updated by assigning each pixel to the motion model best describing the

motion vector at that pixel.

4. Regions containing disjoint areas are split such that all regions are contiguous.

5. Small regions are discarded.

This is essentially an Expectation Maximisation (EM) scheme altering between estimation of

model parameters and maximisation of the likelihood given these models. Typically fewer than

20 iterations are required to segment the first frame. The segmentation of subsequent frames

is initialised using the final result of the previous frame, which encourages temporal coherence.

Once the layer assignments have been made for a number of frames in the sequence, resynthesis
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of frames in the sequence from the layer models can be used to determine the depth relationship

of the layers.

A number of variants on this EM approach have been presented, including methods com-

bining segmentation with motion estimation [14,57,162]. Elias and Kingsbury in [97] presented

some refinements exploiting forward and backward optic flow for more accurate modelling of

uncovering and occlusion. Weiss presented a variant in which layer motion is modelled as a

smooth dense flow field rather than using the affine model [333].

In [41], Borshukov et al.point out that the adaptive k-means clustering used by Wang and

Adelson in [320] results in layers being assigned a mean affine motion model, averaged over

regions in the layer. They suggest replacing this clustering step with a merge, such that the

model chosen for each layer is the candidate model having the best fit. The implementation

of this approach is in a sense a combination of the dominant motion approach described by

Bergen [19] and the Wang-Adelson algorithm.

2.5.1.3 Bayesian approaches

A number of Bayesian approaches to motion segmentation have been described, from the early

work of Murray and Buxton in 1987 [226] to the more recent papers by Torr et al. [304], Vas-

concelos and Lippman [243], and Kumar et al. [187]. An accessible, representative example of

these approaches is the 1997 work by Chang et al.describing a Bayesian framework for simul-

taneous motion estimation segmentation and segmentation [58]. Their treatment is exemplary

and comprehensive, and is outlined here.

The aim is to find optimal flow field D̂ and segmentation map M̂ given frames In and In−1:
(

D̂,M̂
)

= arg max
D,M

[p(D,M|In, In−1)]

= arg max
D,M

[
p(In|D,M, In−1)p(D|M, In−1)p(M|In−1)

p(In|In−1)

]

(2.41)

The denominator here is constant with respect to the unknowns and need not be considered.

The first term in the numerator, p(In|D,M, In−1), describes how well D and M fit the given

frames. This is modelled by a Gibbs distribution with potential function U1(In|D,M, In−1)

based on the DFD:

U1(In|D,M, In−1) =
∑

x

|DFD(x,D(x))|2 (2.42)

p(D|M, In−1) describes how well the label assignments M accord with the motion field D;

the dependence on In−1 is ignored. The motion of the object with label m is modelled as

a parametric mapping Θm (a six parameter affine model is used in [58]). The flow field is

modelled by

D(x) = ΘM(x)(x) + Dr(x) (2.43)

where ΘM(x)(x) is the vector assigned to site x by the model for label M(x) and Dr(x) is the

residual vector at x. A least-squares estimate for the motion models Θm can be found given
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estimates for D and M. The conditional pdf on the flow field is then modelled by a Gibbs

distribution with potential function U2(D|M), where

U2(D|M) = α
∑

x

||D(x) − ΘM(x)(x)||2

+ β
∑

x

∑

x′∈N (x)

||D(x) − D(x′)||2δ(M(x) − M(x′)) (2.44)

The first term here encourages a minimum norm estimate of the residual vectors Dr, and the

second is a piecewise smoothness constraint activated for adjacent sites sharing the same label.

N (x) is the neighborhood of x, typically taken to be represent four- or eight-way connectivity.

α and β are scalars governing the relative influence of these terms.

The third term of the numerator in (2.42) represents the a priori probability of the label

field M, and is designed to encourage smoothness—again, the dependence on In−1 is ignored.

A Gibbs distribution is again used, with potential function U3(M) given by

U3(M) = γ
∑

x

∑

x′∈N (x)

V2(M(x),M(x′)) (2.45)

where γ governs the influence of this term and

V2(x,x
′) =







−1 if x = x′

+1 otherwise
(2.46)

represents the potentials for two-pixel cliques.

Overall, then, the problem is to find D,M minimising the energy U1(·) + U2(·) + U3(·), i.e.

(

D̂,M̂
)

= arg min
D,M

∑

x









|DFD(x,D(x))|2
+α

∑

x ||D(x) − ΘM(x)(x)||2
+β
∑

x

∑

x′∈N (x) ||D(x) − D(x′)||2δ(M(x) − M(x′))

+γ
∑

x

∑

x′∈N (x) V2(M(x),M(x′))









(2.47)

Solving this is achieved by iteration over estimation of the motion field, estimation of the segmen-

tation map, and calculation of the model parameters. Initialisation is provided using optic-flow

based motion estimation [298] and an initial segmentation based on the method described by

Wang and Adelson [320]. This also determines the number of models used. Vasconcelos and

Lippman [243, 311] describe an ‘empirical Bayesian’ approach in which the weights assigned to

the smoothness priors (α, β, γ) are determined from the data.

This scheme illustrates the essentials of Bayesian motion estimation and segmentation, and

the authors describe how (2.47) is a general framework within which many other motion esti-

mation and motion segmentation schemes can be described. For example, with α = γ = 0 and

disregarding the segmentation map (i.e. setting M(x) to 0 at all sites x) describes Bayesian

motion estimation with global smoothness [298]. The Bayesian scene segmentation approach of
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Murray and Stiller [226] is equivalent to setting β = 0 and disregarding the DFD term. The

Wang-Adelson approach relies on the α term for motion segmentation, with a threshold on a

DFD term (using the motion model Θm rather than the optic flow vector [321, equation 9]).

The methods of Stiller [287] and Iu [160] are also shown to fit into this framework.

2.5.2 Segmentation using motion and colour

The schemes described above approach motion segmentation only. Colour information can also

be used, and is readily incorporated in the Bayesian framework described above [187, 304].

Some researchers have used colour segmentation as a preprocessing stage which then informs

subsequent motion segmentation [20, 299, 334], but it is more common to combine motion and

colour features. Some of the earliest work in video segmentation, presented in 1980, takes this

approach [302]. Black [29] describes a Bayesian approach with priors on intensity, edge, and

motion smoothness. Khan and Shah [168] use colour and motion features, and also employ

spatial location as a feature (modelled non-parametrically) to encourage smoothness. In this

work, the weight affecting the influence of the motion feature relative to the colour feature varies

adaptively with motion estimation confidence.

2.5.3 Video volume analysis

The approaches described above are on-line, or frame-recursive, in that each frame is segmented

in sequence. A second class of segmentation algorithms are off-line and process the video as a

volume, or three-dimensional stack of images. The work of Shi and Malik in 1998 [273] falls into

this category. Here the video segmentation is considered as a graph partitioning problem, where

each pixel is a node in the graph and the edges of the graph connect pixels in a spatiotemporal

neighbourhood. The weight applied to each edge corresponds to the similarity of feature vectors

in the connected pixels. In this work only the motion at each pixel is used as a feature. The

normalized cut algorithm is applied recursively to find the most salient partitions of the video

volume. This paper is a part of a body of work exploring graph cuts for image and video

segmentation. The algorithms concerned have been known for some decades [309,347], but the

approach is attracting increasing attention in recent years as it becomes computationally feasible

to to apply these methods to image [163,327] and video [49] data.

Mean shift analysis is another example of a clustering algorithm of long standing [114]

recently applied to image and video segmentation. The technique is based on a local, kernel-

based estimate of the density gradient around each sample. For each sample a track can be found

from the sample to a local density maximum in the feature space. All the samples drawn to the

same local maximum are classified as belonging to the same cluster. The essential parameter of

the method is the bandwidth of the kernel used for density estimation.

The work of Comaniciu et al.brought this technique to prominence [67, 87], demonstrating

applications to tracking [86,88] and image segmentation [84,85]. A mean-shift method for video
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volume segmentation was described by DeMenthon [79] in which multiple passes using increasing

kernel bandwidths are used; this improves computational efficiency, and also has sympathies with

the object-grouping behaviour of human vision [197]. Wang et al.describe video segmentation

using mean shift with an anisotropic kernel [318]. The kernel shape adapts to the covariance

matrix of samples in each neighbourhood. This approach has generated convincing results in

the generation of cartoon-like images from video [319].

2.5.4 Other approaches

The methods described above encompass the main techniques in use for two-dimensional video

segmentation. Some authors have proposed three-dimensional segmentation in which the video

is decomposed into layers and the depth of each pixel in each layer is also estimated; the paper

by Steinbach et al. [285] is representative. It is also noted that the advent of the MPEG-4 video

coding standard [225], with its emphasis on video object planes (VOPs, effectively video layers in

the Wang-Adelson sense), led to considerable research into video segmentation and video sprite

extraction [61,218,297]. Most of this work can be described in terms of the Bayesian framework

outlined above.

2.6 Multiresolution Schemes

It is briefly noted here that most image processing tasks can be applied using a multi-resolution

approach, in which the image is decomposed into a pyramid using successive low-pass filtering

and subsampling. Analysis of the smallest image in the pyramid (at the lowest resolution) is

computationally cheap and can be used to provide a good initial estimate for the image at the

next resolution level.

The first such representation was the Laplacian image pyramid described by Burt and Adel-

son [47], used for image coding. Image pyramid schemes are used in most global and local motion

estimation estimation algorithms, with early use described in block matching [28], phase corre-

lation [99], and pel-recursive [98] techniques. A number of multi-resolution image segmentation

approaches have also been described [251,322].

3
Video Shot Change Detection: A Review

One of the fundamental types of discontinuity in video is the shot change, connecting footage

from two different recordings. Detection of these shot change events is a key first step in any

video retrieval or analysis system of significant scale, and has been an active area of work for

over fifteen years. In this chapter, an problem overview and review of the literature is presented.

Because of the vast quantity of work done in this area, a fully comprehensive review is outside

the scope of this work. For further background, the reader is directed to the review papers

by Costaces [69], Koprinska and Carrato [185], Lienhart [202], Boreczky [37, 38], and Ahanger

and Little [5]. The review paper by Lefevre et al. [195] focuses on real-time techniques in the

uncompressed domain.

3.1 Transitions in Video

The earliest films were made using a camera fixed in orientation and position, and consisted of

very short depictions of particular scenes. The technology of cinema developed rapidly, and the

narrative power of cinema was greatly increased by the advent of increased film stock lengths,

film editing techniques, and mobile cameras. At this stage, a film could be constructed by

concatenating individual shots. The shot is the fundamental film component, consisting of a

single contiguously recorded video sequence [75]. Within a shot, scene transitions such as a

movement from indoors to outdoors can be introduced by changes in camera position. Thus

film and video footage can contain both inter-shot transitions (or simply shot transitions) and

intra-shot transitions. Figure 3.1 shows a selection of shots from the 1999 film ‘La Fille sur Le

28



3.1. Transitions in Video 29

Pont’ [190]. The shots are connected by cut transitions. Each row shows the first, middle, and

last frame of the shot.

Shot change detection, also called shot boundary detection and temporal video segmenta-

tion, has been an active area of video processing research since at least as early as 1990 [228],

and continues to attract attention in the present day [69]. It is a key prerequisite for auto-

mated and semi-automated video processing systems of any scale. In many video indexing and

content-based retrieval systems, the shot is the retrieval unit. Automatic video summarization

is generally shot-oriented, where representative frames from each shot are chosen to represent

the entire video. Spatiotemporal video processing algorithms, such as motion estimation, rely on

assumptions of temporal smoothness in video; shot boundary detection is required here because

shot boundaries violate these assumptions. In computer assisted video processing, having the

source material automatically decomposed into shots facilitates more rapid setting of parameters

than having the operator select ranges of frames.

As well as enabling the processing of individual shots as units, shot transitions in themselves

have considerable significance in film semantics. Rules informing the selection and juxtaposition

of shots constitute a significant portion of film grammar. Experiments by Kuleshov in 1918

showed how editing could dramatically affect an audience’s interpretation of film footage. The

montage theory developed by Sergei Eisenstein in the 1920s built on this phenomenon to describe

how artful editing techniques constitute in themselves an important part of the narrative and

affective content of a film [68]. Vasconcelos and Lippman [313] have shown that shot length is

correlated with genre.

The large majority of shot change detection algorithms target inter-shot transitions. The

detection of other, intra-shot transitions is considered a false alarm in this context. On the face

of it, this approach seems appropriate—however, there are two pertinent concerns. Firstly, shot

change detection in this strict sense is not always a well-posed problem, for reasons discussed

below. Secondly, in most applications of shot change detection, including those mentioned above,

significant intra-shot transitions are as important as inter-shot transitions [135].

Shot transitions are introduced at the editing stage, and fall into two principal types. Cuts

are transitions where two successive frames are from different shots. The abrupt nature of these

transitions makes them relatively easy to detect in most cases. Gradual transitions are slower,

involving a temporal region of overlap between two sources. There are various types, including

fade in and fade out transitions, where the shot is faded in from, or out to, a black background;

dissolves, where the overlapping regions of two shots are linearly blended; and wipes and page

turns, in which one shot appears move out of the frame to reveal or be replaced by the succeeding

shots, and morphs. These transition types have been categorised by Hampapur [133] into spatial

effects, including wipes and page turns, chromatic effects, being mostly fades and dissolves, and

spatio-chromatic effects, such as morphing. Of these gradual transition types, most work has

been directed towards the detection of fades and dissolves, with some researchers also targeting

wipe transitions.
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Figure 3.1: The first, middle, and last frames of six shots from the film ‘La Fille Sur Le

Pont’ [190].
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3.2 Shot Change Detection Systems

Shot change detection is predicated on the assumption that there will be a change in the image

content across the shot boundary. Therefore, all shot change detection systems rely on the

extraction of some features from the video stream to characterise the individual frames. Com-

paring the features of two frames then provides a measure of how similar they are. Adjacent

frames that are highly dissimilar are likely to belong to different shots. This process is illustrated

in overview in figure 3.2.

A wide variety of features for characterising frame content have been proposed in the shot

boundary detection literature, and for many kinds of features numerous similarity metrics have

been proposed. In figure 3.2, intensity histograms and points with high local gradient are pre-

sented as illustrative features. Whatever the features and feature comparison method selected,

they are used to generate dissimilarity traces, describing frame-to-frame similarity over the tem-

poral extent of the film. High dissimilarity values generally indicate that some transition has

occurred between two frames. The final stage of the process is then to classify this transition as

an inter-shot / editing transition, such as a cut or a fade, or an intra-shot transition resulting

from a change in camera position. Subsequent sections of this chapter present a comprehensive

review of the features and feature comparison methods used in shot change detection systems,

and of the techniques used to detect and classify boundaries in the dissimilarity traces. These

follow the section below, describing why automatic shot change detection is a challenging un-

dertaking.

3.3 Factors Complicating Shot Change Detection

Since the earliest shot change detection research, most papers in the area have reported very

good detection performance, particularly for cut detection. However, it must be borne in mind

that in a practical sense, the shot change detection task is getting more difficult as the limitations

on digital video storage capacity expand. For example, the cut detection method proposed by

Arman in 1993 [12] was tested on about 6 minutes of broadcast news footage, whereas in the

current TRECVID shot boundary detection task, 7.5 hours of video material is provided [275].

This vast increase in the size of the typical digital video corpus results in a much wider range

of video characteristics. The shortcomings of early, simpler shot change detection systems are

revealed in evaluation against these larger corpora, and continuing research in shot change

detection is driven by the challenge of maintaining high performance over an ever-widening

range of digital video material.

3.3.1 Similarity characteristics

Of the various characteristics of video that make shot change detection difficult, high intra-shot

activity is the most commonly mentioned. Fast camera or object motion, and rapid changes
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Figure 3.2: Shot Change Detection System Overview
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of illumination (as with camera flashes), can introduce high frame-to-frame dissimilarity, and

thereby a high false alarm rate.

The complementary issue is that of sequences with low inter-shot variation, for example

where successive shots have similar intensity distributions [210]. In sports footage, successive

shots can have very similar chrominance characteristics [1,56], for example where they show the

playing field from only slightly different angles.

3.3.2 Film degradation

It is generally more difficult to detect shot transitions in video or film footage exhibiting defects

or degradations, and various authors have presented shot change detection algorithms designed

with this consideration in mind. Flicker is a rapid temporal variation in the mean brightness of

a sequence [254]; several systems for shot change detection in the presence of flicker have been

presented [10,131]. Systems designed to be robust in the face of camera flashlight activity [144]

may also be expected to cope with flicker. Impulsive defects, such as dropout and dirt, can

trigger false cut detections, especially where adaptive thresholds are in use. A histogram-based

system using sub-frame blocks designed to be resilient to large blotch defects is described in [180].

Machi and Tripiciano suggest a semi-automatic shot cut detection system suitable for use with

heavily degraded footage [211].

3.3.3 Shot dynamics

The dynamics of shot changes in a particular sequence can introduce difficulties. The simplest

example of this is where shot changes occur in rapid succession, possibly violating a priori

assumptions regarding shot length. This causes particular difficulty when the shots in question

display high levels of motion activity—which is the kind of sequence in which rapid shot changes

is stylisticaly appropriate. The shot in the second row from the bottom in figure 3.1, for example,

is only 11 frames long, and the cut connects two shots with high activity.

3.3.4 Editing style

The great majority of mainstream and Hollywood movies are edited in a particular style known

as continuity editing. The aim of this style is to make the work of the film editor as unobtrusive

as possible, so that the audience’s attention is focused on the narrative. One of the conventions

of continuity editing is the 30◦ rule [139], which states that a shot change should involve a shift

in camera angle of at least 30◦. Any smaller change of angle between shots (potentially including

0◦, where the camera is stopped and started with no change in orientation) tends to be perceived

as a glitch in the film, rather than a shot change.

The 30◦ rule facilitates shot change detection in that the new camera angle will generally

introduce a substantial change in the video background and composition. However, it is a

convention commonly flouted in less mainstream material, where jump cuts [139] are often used.
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The technique was introduced in the 1960 film ‘À Bout de Souffle’ [120] and has been a hallmark

of nouvelle vague cinema since. Jump cuts are also commonly used in music videos. Figure 3.3

shows some examples of jump cuts from ‘À Bout de Souffle’, and figure 3.4 shows some from a

2004 music video [198]. Shot change detection in these cases is substantially more difficult than

in more conventionally edited sequences, because of the high similarity of frames on either side

of the shot change boundary. Furthermore, it is not always clear whether these small jump cuts

should be considered shot changes at all.

Some researchers have found that an observer-generated ground truth for cut transitions

exhibits variation between observers and inconsistency within repeated evaluations by a single

observer [116,117,166]. In other words, cut detection is in some degree a subjective measurement.

3.3.5 Non-Sequential Shot Structure

The assumption is generally made that video and film material consists of a sequence of shots,

each from a single camera, possibly having small areas of overlap at gradual transitions. Mod-

ern video compositing techniques violate that assumption. For example, a broadcaster’s logo, as

commonly displayed in an upper corner of the screen, will persist unaffected over cuts and dis-

solves, which can have implications for model-based approaches. In news footage, it is common

for a subtitle panel to be superimposed over the start of a segment, introducing the presenter

and location of the shot. This panel may persist over an early shot change in the segment, and

will usually abruptly disappear or fade out after a few seconds later. In some highly stylised

music video footage, shots are effectively not sequential at all, but rather overlapping and com-

posited by various techniques over the entire sequence. In all these cases, what is at work is the

superimposition of multiple sources, each of which can contain shot transitions or other discon-

tinuities. Two examples of this sort of effect are shown in the top two cuts of figure 3.4. In both

examples, footage of a face is composited over a background source, and a jump cut is introduced

in the face source while the background source remains continuous. These considerations are

not addressed by current work in shot change detection.

3.4 Features for Shot Change Detection

The first stage in shot transition detection is the choice of features to represent an image, along

with a measure to describe frame dissimilarity based on these features. As outlined above,

the design criteria for these features is that as far as possible, they should be insensitive to

camera motion, object motion, and changes in illumination. This section describes the commonly

employed features for shot change detection. For further review material specifically addressing

features for frame similarity, see the discussions presented by Otsuji et al. [246], Ford et al. [112]

and Bescos et al. [22].
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Figure 3.3: Two jump cuts from the film ‘À Bout de Souffle’ [120]. Each row of images shows

four consecutive frames. The cut occurs after two frames in each case.

Figure 3.4: Three jump cuts from the music video ‘Mutescreamer’ [198]. Each row of images

shows four consecutive frames. The cut occurs after two frames in each case.
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3.4.1 Direct Image Comparison

The simplest approach to measuring frame similarity is simply to compare pixel values at cor-

responding sites in a pair of frames. In its most basic form, this approach suggests the mean

absolute difference measure:

DMAD(n, n′) =

∑R
r=1

∑C
c=1 |In(r, c) − In′(r, c)|

RC
(3.1)

where n and n′ are the frames being compared, and In(r, c) is the intensity value at site (r, c)

of frame n in a video with dimensions R×C. Use of DMAD extends back at least to 1992 [170,

229,349].

The DMAD measure is sensitive to all intra-shot activity, including local and camera motion,

noise, and illumination changes. Local motion, in particular, can result in a small fraction of

pixels having a very high absolute intensity difference. Using DMAD, this is indistinguishable

from a shot change resulting in a greater number of pixels having a moderate intensity difference.

A slightly more complex distance measure disambiguates these situations. Instead of taking

the mean absolute difference, the fraction of pixel sites that change value by more than some

threshold T is used. The resulting measure is

DCF =
|{(r, c) : |In(r, c) − Im(r, c)| > T}|

RC
(3.2)

where the subscript CF stands for ‘change fraction’. Use of DCF actually precedes use of DMAD,

having been first presented for cut detection in 1991 by Otsuji et al. [174].

Most shot changes can still be perceived in video after considerable downsampling—and

downsampling, or smoothing, reduces the effects of image noise and motion. The more the

image is downsampled, the greater the attenuation of these effects. Thus downsampling the

image sequence prior to applying shot change detection can be helpful, particularly when using

direct image comparison measures.

Among the researchers to recognise this, Zhang et al.are among the earliest. They employed

a 3× 3 averaging filter prior to pixel differencing in their 1993 paper [349]. Ardizzone et al.used

downsampling to an image size of 16× 16 before applying pixel differencing [11]. This extensive

data reduction was motivated by the desire to facilitate real-time processing of the difference

image by a neural network, but the authors recognise that resilience to motion is introduced by

the downsampling. Good cut detection performance is reported, indicating that even 16× 16 is

not too small for cut detection.

Any direct image comparison metric will be sensitive to camera motion, as this can introduce

changes in intensity values at a large fraction of pixel sites over the entire extent of the image.

Global motion compensation can be used to reduce this effect. One of the more sophisticated

implementations of this refinement was presented by Bouthemy in 1996 [42, 43]. Here affine

camera motion parameters are estimated using an iterative robust estimation technique (outlined

in chapter 2); the number of pixels in the support region (i.e. those pixels obeying the affine
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model) is then used as the similarity measure. As the support region is updated according to

the pixelwise error after each iteration, this scheme is essentially an application of DCF with

global motion compensation.

The measures DMAD and DCF described above consider the pixel differences in aggregate,

i.e. summed or counted over the entire frame. A more sophisticated approach to direct image

comparison is to use the distribution of pixel value changes from one frame to the next. The

work by Aigrain and Joly [6] is an early example in this category. The distribution of absolute

intensity differences, pixel-to-pixel, is analysed with reference to models describing the expected

difference values for noise, motion (both local and global), and shot transitions. The number of

pixels in the difference histogram falling inside ranges determined by the models is counted, and

this count determines whether a shot transition is declared or not. Up to 100% performance on

cut detection is reported, and 80% for gradual transition detection.

The two-dimensional histogram Hn,n′(i, i′), describing the number of pixels sites which

change from value i to value i′ between frames n and n′, can also be used for shot change

detection. For similar images, most of the mass of the histogram will lie along the main diago-

nal of H, as most pixel sites will not change in value.

One of the earliest applications of this two-dimensional histogram approach, introduced by

Li and Wei in 2000 [200], exploited this fact directly. Here the histogram is called the Joint

Probability Image (JPI). A scene change is declared if the fraction of histogram mass more than

five pixels away from the diagonal exceeds a fixed threshold. This measure is in fact equivalent to

thresholding DCF , and so this paper does not offer an advance in transition detection. However,

the paper does describe how the JPI can be used for transition classification. This contribution

is summarised in the section on transition classification below.

Applying information theoretic measures to the change histogram does improve on the sub-

traction based methods, however. One such measure is the mutual information between frames,

defined as

DMI(t, t
′) = −

∑

x,y

Ht,t′(x, y) log

(
Ht,t′(x, y)

Ht(x)Ht′(y)

)

(3.3)

Here Ht(x) is the fraction of pixel sites having the value x in frame t.

The first use of DMI for shot change detection was by Butz and Thiran in 2001 [48]. The

mutual information is found using frame intensity values, and camera motion is compensated

for using an affine model.

DMI has also been deployed by Cernekova et al.in 2002 [55, 56]. Here the similarity metric

is the sum of the mutual information over the R, G, and B image channels. An additional

information-theoretic measure, the joint entropy, is also employed. For a single channel, the

joint entropy is defined by

DJE(t, t′) = −
∑

x,y

pt,t′(x, y) log pt,t′(x, y) (3.4)

DJE is summed over the R, G, and B channels to obtain an additional dissimilarity measure.
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Figure 3.5: Joint probability images [200] within a shot and across a shot boundary

DMI suffices to detect cut transitions, while DJE is used to detect fades. Good resilience against

the effects of camera flashes is demonstrated. However, this method is only applicable to fade

in and fade out transitions, and not to dissolves between shots. Global motion compensation is

not employed.

3.4.2 Statistical Image Comparison

The measures considered above are all based on quantifying the change in image value at corre-

sponding locations. Motion in the video sequence will inevitably be registered by these measures.

For the purposes of shot change detection, a difference metric insensitive to the effects of motion

is preferable.

In most cases, motion in an image sequence results in a displacement or re-arrangement of

the pixel values. The distribution of pixel values over the entire frame is largely unaffected

by motion. This consideration motivates statistical image comparison, using on features that

encapsulate the distribution of pixel values in a location-invariant way.

The fundamental feature for statistical image comparison is the pixel value histogram, Ht(j),

which describes the number of pixels having value j at time t. This is the earliest and most
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widely-employed feature for shot change detection, first exploited in 1990 [228].

A great variety of histogram based frame comparison systems have been proposed; the

variations include the resolution (bin width) of the histogram, the colour space used, and the

method used to calculate the difference between two histograms.

Varying the bin width of the histogram is generally motivated by computational concerns

and to avoid the ’curse of dimensionality’, especially in three-dimensional colour histogramming.

Using eight bits of resolution for each of three channels, for example, results in a 16 million bin

histogram. Much coarser colour histograms have been shown to have good performance for

shot change detection. For example, Zhang et al.use a histogram over R, G, B values where

each colour level is quantised to two bits, resulting in a 64-bin histogram [349]. Outside of

computational concerns, the question of whether there is an optimal bin width for shot change

detection has not been considered.

Many shot change detection algorithms operate using intensity information alone. Shot

transitions are readily perceptible to human observers in monochrome video footage, so there

is sufficient information in the intensity channel for detection. Furthermore, algorithms using

only intensity information are equally applicable to colour and monochrome material. However

there are advantages to incorporating colour information in a shot change detection algorithm.

For example, camera flashes introduce a change in the intensity histograms of video frames, but

will not affect the chrominance information. This suggests the use of a colourspace in which

luminance and chrominance are independent, such as YUV, HSV, or XYZ.

One difficulty in incorporating colour information in shot change detection is that chromi-

nance information is indeterminate where luminance levels are low. Lee and Ip presented a

system in 1994 operating in the HSV colourspace addressing this difficulty. Here each pixel

value is recorded in either the hue histogram or the intensity histogram, depending on whether

the saturation and brightness values both exceed fixed thresholds, or not. Frame comparison is

based on the difference of both the intensity and hue histograms.

Numerous measures for histogram comparison have been proposed for shot change detec-

tion, and much of the work in histogram-based shot change detection focuses on selection and

evaluation of this measure. The simplest histogram distance is the bin-to-bin difference, defined

by

DB2B(t, t′) =
1

2RC

∑

j

|Ht(j) −Ht′(j)| (3.5)

where j is an intensity level, typically varying from 0-255, and Ht(j) is the number of pixels in

frame t taking the value j. This measure is analogous to the DMAD measure for direct image

comparison. The system presented by Tonomura in 1991 [303] used DB2B .

A second commonly employed histogram comparison is the χ2 test

Dχ2(t, t′) =
1

(RC)2

∑

j

|Ht(j) −Ht′(j)|2
Ht′(j)

(3.6)
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also called the colour correlation. The χ2 test applied to image intensity histograms is the

earliest employed frame similarity measure for shot detection, used by Nagasaka in 1990 [228] and

numerous systems since then [155,229,308]. Squaring the difference value essentially introduces

a higher weight on large difference values, and so is supposed to enhance the dissimilarity across

a shot boundary. However, as histogram differences due to motion are also squared, performance

is not necessarily improved [349].

The histogram intersection [292] has also been proposed. In its basic form, it is defined by

DHI = 1 −
∑

j

min(Ht(j),Ht′(j))

RC
(3.7)

A modified version was evaluated for shot change detection by Kasturi et al. [166], defined by

DHI′ = 1 −
∑

j

min(Ht(j),Ht′ (j))

max(Ht(j),Ht′ (j))
(3.8)

A comprehensive review and evaluation of histogram-based cut detection was presented by

Kasturi et al.in 1996 [166]. This work encompassed eight colour spaces (RGB; HSV; YIQ; XYZ;

L*a*b*; L*u*v*; Munsell; opponent colour axes) and four histogram comparison methods (bin-

to-bin; histogram intersection; average colour difference, bin differencing with a neighbourhood,

χ2). No single histogram distance emerges as the clear winner in this evaluation.

The Kolmogorov-Smirnov measure, DKS, is the maximum bin difference between cumulative

histograms:

DKS(t, t′) = max
j

(CHt(j) − CHt′(j)| (3.9)

This measure was first proposed for shot detection by Patel and Sethi [248]. It was shown to

outperform DB2B and Dχ2 ; the improved performance is attributed to the smoothing inherent

in the use of cumulative histograms.

In 2000, Ford et al.published a comprehensive evaluation of the histogram difference measures

proposed up to then for shot change detection [112], including those described above and some

others. This paper establishes that the DKS measure has the best performance, in terms of the

ROC area, for global intensity histograms—though Dχ2 is better for colour histograms. Tan et

al.in 2003 [296] proposed an improved Kolmogorov-Smirnov measure, DKS′. Their suggestion

is that the global smoothing of the cumulative histogram be combined with the sensitivity of

bin-to-bin comparison. The new measure is denoted DKS′ , where

DKS′(t, t′) =
∑

k

DKS(t, t′; k)
NS

(3.10)

This is the sum of the Kolmogorov-Smirnov distances over sections k of the intensity range. The

distance over each section is found using

DKS(t, t′; k) = max
j

(|CHt(j; k) −CHt′(j; k)|) (3.11)
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and the cumulative histogram value for intensity level j in section k of the range is given by

CHt(j; k) =

kM+j−1
∑

m=kM

Ht(m) (3.12)

where M is the section size.

More recently proposed histogram distance measures include the Kullback-Leibler histogram

distance

DKL(p, q) =

∫

p(x) log
p(x)

q(x)
dx =

∫

(1 − p(x)) log
1 − p(x)

1 − q(x)
dx (3.13)

and the cross-entropy measure

DCE(p, q) = A

∫

q(x) log
q(x)

p(x)
dx+B

∫

p(x) log
p(x)

q(x)
dx (3.14)

Both of these measures have been described and evaluated by Kim and Park [173]. Both mea-

sures are shown to outperform the histogram difference and histogram intersection measures, in

particular on material with luminance changes.

Shih et al. [52] model the change in frame histograms as a flow and deploy the Reynolds

Transport Theorem [257] to detect significant changes in this flow, and thereby detect shot

changes. This approach is appealingly well-founded, and suited to detection of all kinds of shot

transitions. However, the authors do not show results on videos containing significant motion,

and suggest that the method would be less effective on such sequences.

The Earth Mover’s Distance (EMD) [264,265] is a histogram difference metric well-suited to

image histograms and widely used in image retrieval. It appears not to be extensively used in

shot change detection [262]. A description of this distance appears in chapter 7 of this thesis.

The great majority of of histogram-based shot change detection methods use pixel values.

In other words, frames are characterised by the distribution of intensity or colour levels they

contain. An interesting variation on the histogram approach developed by Sze et al. [294]

attempts to calculate the distribution over structural elements. Each frame is divided into small

blocks, and for each block the coloured pattern appearance model (CPAM) is found. The CPAM

is a representation of the structure and colour in a block, informed by the perceptual qualities

of the human visual system. Vector quantisation is used to reduce each block to one of 256

codewords, and frame similarity is computed based on histograms of the codewords in each

frame.

3.4.3 Block Based Similarity

A shot change generally introduces change across the entire spatial extent of the frame. This

suggests that global features will be sufficient for shot change detection. However, strong lo-

calised changes due to rapid motion, pathological activity such as explosions, or large frame

defects, can introduce large changes in global features and result in false alarms. Furthermore,

calculation and comparison of features over the entire frame extent can be relatively expensive
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in computation effort. For both of these reasons, block-based systems have been introduced, in

which the frame extent is divided into blocks, or windows, which may be overlapping or non-

overlapping. Comparison between multiple block pairs is then used as the frame dissimilarity

measure. Comparing the entire image block-by-block improves resilience to localised effects.

Alternatively, comparing only some subset of blocks introduces a computational saving.

Any block based scheme will be based on a difference measure between image regions. All the

direct and statistical image comparison methods described above can be applied to sub-blocks

for this purpose. Pixel differencing over individual blocks has been proposed by Zhang [349]

and Yusoff [342]. Systems using block-based histogram comparison have been developed by

Nagasaka and Tanaka [228,229], Ueda et al. [308], Swanberg [293], and Kokaram et al. [180].

A very simple approach to block comparison is to use block intensity statistics [132, 165].

Here, the block comparison measure is defined by

Dk
BS =

[

(σk
t )2+(σk

t′
)2

2 +

(
µk

t −µk
t′

2

)2
]2

(σkt )
2(σkt′)

2
(3.15)

where µkt and (σkt )
2 are the mean and variance of the gray values within block k of frame t. This

can be considered as a slightly more sophisticated approach to extreme downsampling, in that

the inclusion of the block variance gives a crude measure of how representative the block mean

is of the actual block content. The individual block differences can be summed to give a frame

difference, or the number of block differences exceeding a threshold can be used.

Normalised correlation in the frequency domain can also be used for block similarity [256,

315]. This provides some resilience to changes of illumination, and it is also noted that high

performance Fourier transform implementations are available for most platforms.

Various refinements to block-based shot change detection systems can be considered, irre-

spective of the block difference measure used. For example, in early schemes blocks are compared

in spatially corresponding pairs. The effects of motion can be mitigated by comparing each block

in frame n with the most similar block in some neighborhood in frame n+1. This was first pro-

posed by Shahraray [271], and has been used in numerous systems since then [135,256,335,342].

The result is a discontinuity measure essentially the same as the displaced frame difference

(DFD)

DDFD(t, t′, k) = min
−M≤u,v≤M

1

M2

xk+M−1
∑

x=xk

yk+M−1
∑

y=yk

(|It(x+ u, y + v) − It′(x+ u, y + v)|) (3.16)

where block number k has its top left corner at image coordinates xi, yi.

Establishing these block correspondences in the best-match sense is closely related to optic

flow estimation, which has itself been used for shot change detection. Within a shot, adjacent

blocks are likely to move together, while across a shot boundary the blocks will be matched some-

what randomly and the coherence of the flow field will be lost. Thus the flow field smoothness
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can be used as a frame similarity measure. Systems exploiting this include the work of Akutsui

in 1992 [7] using block matching, and the more recent approach of Cheong and Huo [59, 60],

exploiting the optic flow constraint.

Park et al. [247] have pointed out that the the blur introduced by fast motion can introduce

a high blockwise difference within a correctly matched pair of blocks. They propose inversely

weighting DDFD by the Euclidean distance between matched blocks to account for this.

As a scene change will affect the entire spatial extent of an image, it may be sufficient to

compare a portion of the blocks to determine whether a scene change has occurred. The work

of Xiong et al. [329, 330] uses comparison of block mean value in less than half of the block

windows to detect transitions; this approach is called net comparison. Adjeroh et al. [4] present

a formalised approach for determining the appropriate block size, given a tolerable probability

ρ of a false match between frames. The calculations are an extension of work on probabilistic

histogram matching [193]. The minimum proportion of the image to match to attain the desired

probability of error, fmin, is given by:

fmin ≥ log(ρ)
√
N log

(
1

1+ 4
εN

) (3.17)

where ε is a small constant (e.g. 0.001) relating to the amount of noise in the image sequence.

The optimal window size, Wo, which minimizes the number of comparisons necessary, is found

by

Wo =

[

N

(

1 − exp

(
1

N
ln

(
1

2(N + 1)

)))]2

(3.18)

and the dimensions of this optimal window size, Ro ×Co, for an image with dimensions R×C,

are then

Ro =

(
WoR

C

) 1
2

;Co =

(
WoC

R

) 1
2

(3.19)

The block grid will contain No = N/Wo windows. Of these, the number that should be compared

to attain a probability of false match, ρ, is the smallest integer Nmin satisfying.

Nmin ≥ Nofmin (3.20)

For example, for an image sequence with dimensions 720 × 576, the optimal window size

according to 3.18 is about 16 × 12. With the ρ and ε parameters set to 0.0001 and 0.0001

respectively, the fmin parameter is found to be 0.155, and so 335 of the 2160 blocks should be

compared to assure a match. The authors note that for some combinations of N , ρ, and ε, the

formulae result in fmin > 1. This suggests that the specified probability of a false match cannot

be attained given the noise characteristics of the image sequence. In the absence of further

elaboration of the quantitative relationship of the ε parameter to the noise characteristics, it is

difficult to make a definitive interpretation.

Two aspects of these calculations are not addressed in [4]. The authors do not investigate

how the chosen fraction of windows should be distributed about the block grid, although they
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do identify this as a topic for investigation. Of greater concern is the fact that the derivations

of the formulae do not seem to have been published.

Whether all blocks are being compared, or only a subset, it is likely to be the case that the

largest block differences between two frames in the same shot will be due to localised effects such

as motion. Thus discarding the largest block differences reduces the effects of large localised

motion and image defects [68,180,256]. The earliest shot detection system recognised this fact,

in which colour histograms are compared for 16 blocks spanning the frame, and the sum of

the 8 smallest block difference measures used as the frame similarity measure [228]. In 1995,

Shahraray [271] introduced a non-linear order statistics filter to combine block match values.

Here the weight assigned to a block match value depends on its rank in an ordered list of match

values, such that poorer matches are assigned lower weights.

3.4.4 Structural feature similarity

The similarity measures described above are essentially ‘blind’, or content-unaware, in that no

analysis of the video content is made to inform how frames can be compared most effectively

for shot change detection. The approaches considered here are feature-based, in that the most

informative or important regions of the video frames are detected, and shot change detection is

based on analysis of these regions in particular. Because successive frames within a shot depict

very similar scenes, the location of most of these local features should not change significantly

between two successive frames in the same shot. The similarity measure is thus based on the

extent to which features can be tracked from one frame to the next.

One of the earliest works in this vein is the edge-based system published by Zabih et

al. [344,345]. They define the edge change fraction as their similarity measure, based on thresh-

olding the distance from an edge pixel in one image to the closest edge pixel in an adjacent image.

A translational global motion compensation step is included to account for camera movement—

interestingly, the authors reject the use of MPEG compression vectors for camera motion ex-

traction. Their algorithm generates smoother dissimilarity traces than both intensity histogram

difference and the chromatic scaling method of Hampapur [133]. However Lienhart states that

overall, histogram techniques can be just as effective as this edge tracking method [202].

Finer-grained feature tracking has also been proposed for shot change detection. Whitehead

et al. [324] have presented a system using corner tracking in the intensity channel, with a

translational motion gradient-based feature tracking algorithm. The scheme is applied using a

multi-resolution image pyramid, for robustness to large motion. Because of the lack of spatial

context implied by the small scale of the features used, features may occasionally be erroneously

tracked across a shot cut boundary. However, because features are generally tracked in clusters

corresponding to objects in the scene, the erroneous matches can be removed by analysis of

the minimum spanning trees of the tracked and untracked features. The algorithm is shown

to outperform histogram based and pixel-differencing approaches on a variety of genres with
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challenging cut dynamics.

An interesting variation on feature tracking for shot change detection has recently been

presented by Boccignone et al. [34, 35]. This method is grounded in properties of attention in

the human visual system. In particular, the fovea, the high-acuity area of the retina, is so small

that only a small proportion of a scene can be taken in in a glance. To compensate for this,

the eyes saccade (move rapidly) over a scene, taking in localised windows at each movement.

This gives the illusion of perception of the entire scene, but in fact changes to visual detail

across scene cuts, and continuity errors, are rarely noticed by an observer due to this property

of foveated attention. An idealised model of a human observer is used to detect features and

rank them in order of saliency. This results in a spatio-temporal visuomotor trace, essentially

an idealisation of the foveation points of an idealised observer when presented with the scene.

The colour, shape, and texture characteristics of each foveation point are extracted. The frame

similarity measure is then based on comparison of the visuomotor traces for each frame, using

the characteristics of corresponding foveation points.

Some researchers perform object segmentation of frames in the video, and compare the results

of this segmentation between frames as their similarity measure. The work of Hsu [150, 151]

presented in 1994 uses implicit segmentation to extract video elements in the 3-D video volume.

Motion discontinuities can be detected by consideration of the sign of the Gaussian and mean

curvature of these volumes, or spatiotemporal surfaces. Heng and Ngan use edge tracing and

tracking over multiple frames to delineate object boundaries [142, 143], incorporating colour

information from each side of the edge as an additional feature. The approach is shown to

have smoother behaviour than the edge change factor presented by Zabih [344] over gradual

transitions. More recently, Vadivel [310] uses segmentation of the I-frames of MPEG-compressed

video in the HSV colour space, and compares the locations, sizes, and colours of the resulting

objects to detect a transition.

3.4.5 Shot Modelling and Feature Clustering

The systems described above are all based on comparison between two frames. No wider context

is incorporated in direct or statistical image comparison. A different approach to shot change

detection is to perform feature extraction for the entire sequence first, and then to consider the

features for all frames simultaneously for shot change detection.

These approaches can be thought of as constructing a spatio-temporal image, or sequence

matrix, summarising the video sequence. Shot transitions are then supposed to be readily

identifiable within this image. An early example of this approach is due to Han, presented in

1999 [134]. Here each frame is represented by its horizontal and vertical projections. Figure 3.6

(a) shows a spatiotemporal image made up of the horizontal projections of some news footage.

In [134], PCA is applied to these matrices and the largest principal component is disregarded

to reduce the effect of luminance changes.
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(a) Horizontal projection image (b) Visual rhythm image

Figure 3.6: Two varieties of spatio-temporal image for 640 frames of news footage; the columns

of the spatio-temporal images correspond to the frames of the video. The shot transitions in the

video are clearly visible in these images. It also clear in these images how compositing effects

can break the strict sequential shot model. The rectangular feature in the lower middle of both

images and the unbroken white line near the top of (b) correspond to composited image elements

that persist over shot transitions in the underlying video.

The visual rhythm, presented by Chung in 2000 [66], constructs a similar spatio-temporal

image made up of pixels sampled uniformly along the main diagonal of each frame. An example

of a visual rhythm image is shown in figure 3.6 (b). Transitions such as cuts, wipes, and

dissolves can then be identified by analysis of the image. The visual rhythm is also employed

by Guimaraes [127–129].

The approaches above use spatial domain features to construct the spatio-temporal im-

age. The sequence matrix can also be constructed using frame histograms. Guimaraes in 2002

presented an approach where the sequence matrix is described as the ‘visual rhythm by his-

togram’ [126]. Here fades are detected by direct analysis of this image.

Recent work by Lu and Tan [207,208] uses image histograms in HSV space computed over the

entire sequence. Their system is presented for the refinement of an existing temporal segmen-

tation, but could equally be used for ab initio shot change detection with an inital assumption

that the entire sequence is a single shot. The colour histogram for each shot is simply the

bin-wise median of the histograms of the frames within the shot. The model for each shot is

the shot histogram along with a truncated exponential describing the distribution of histogram

differences within the shot. The likelihood of a frame histogram Xt being generated by shot k

is

pk(Xt) =

{

βk exp(−αk|Xt − Sk|), if 0 ≤ |Xt − Sk| ≤ 1

0, otherwise
(3.21)

The parameter αk relates to the visual activity in the shot and can be determined from the

data. βk is a normalising constant which can be determined analytically.

Given an M -frame sequence divided into two shots S1 and S2, the log-likelihood ratio for
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shot membership of a frame at t with histogram Xt is

J(t) =
∑M

n=t
p2(Xn)
p1(Xn) =

∑M
n=t

β2 exp(−α2|Xt−S2|)
β1 exp(−α1|Xt−S1|)

=
∑M

n=t(−α2|Xn − S2| + α1|Xn − S1| + (M − t+ 1) log(β2

β1
) (3.22)

New shot detections are detected by splitting each initial shot S into two proposed shots of equal

length S1 and S2, and evaluating the log-likelihood ratio of the shot membership hypotheses for

each frame in S. This partitioning introduces discontinuities in the slope of the log-likelihood

ratio at shot boundaries. The procedure is recursively applied until no further shot boundaries

are found. The log-likelihood test can also be used to detect false shot boundaries in the initial

temporal segmentation.

Sequence matrices made up of image histograms, especially colour histograms, can be very

large, and suggest dimensionality reduction for shot change detection. For example, in the work

by Gong and Liu [121], each column of the sequence matrix is the 1125-dimensional vector

comprising the 125-bin 3D RGB histogram of each of nine blocks covering the spatial extent

of the frame. The singular value decomposition (SVD) of the matrix is found, and the 150

largest singular values retained. The frame difference measure is then the weighted Euclidean

distance between their feature vectors in this reduced-dimensionality space. Cernekova et al.have

presented a similar approach, also employing SVD on the sequence matrix and using a cosine

similarity measure [53,54].

The approaches described above are off-line, in that shot changes are detected using data

from the entire sequence, after an initial feature extraction pass. On-line sequence modelling

can also be used. Liu and Chen [204] use PCA to analyse the temporal statistics of frame

features. The model is recursively updated with temporal decay. The similarity measure is then

the reconstruction error after projection of the feature vector into the eigenspace found by the

model.

3.4.6 Frame Similarity in the Compressed Domain

A vast quantity of digital video material is stored and transmitted in compressed form. Most

of this material is compressed using MPEG compression; DVD video and digital television use

MPEG-2, while MPEG-4 is very popular for internet video. There has been considerable re-

search into video processing in the compressed domain, i.e. into systems that can process stored

digital video without fully decompressing it. The chief advantage of this is that the computa-

tional overhead of fully decompressing the video can be avoided. Furthermore, in some cases

the information in the compressed data can be exploited, taking advantage of the computa-

tional effort already expended in compressing the material. For example, video compression

schemes generally incorporate motion estimation, and for some purposes the motion vectors in

the compressed data can be used instead of decompressing the material and applying optic flow

analysis.
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Numerous systems for shot change detection in the compressed domain have been pre-

sented [21,25,51,107,108,145]. Wang et al.have recently presented a clear review of features in

MPEG-compressed data for indexing and analysis [316]. Systems for shot change detection in

the compressed domain can be categorised in two classes. Image-based approaches use methods

similar to those described above for uncompressed data, adapted and applied to compressed

video. Generally, the advantage of these schemes is the computational saving of avoiding full

decompression. Non-image-based approaches exploit the compression characteristics of the com-

pressed data, such that the compression of the video is used as a useful preprocessing step to

furnish additional features for shot change detection.

Most video compression schemes use a blockwise Discrete Cosine Transform (DCT) trans-

form for spatial compression. This results in two sets of features that can be used for shot

change detection: the DC coefficients, related to the average luminance / chrominance in the

block, and the AC coefficients, which account for variations within the block. The DC coeffi-

cients together make up the DC sequence, which is essentially a heavily downsampled copy of

the original sequence. The downsampling factor is the same as the block size of the compression

scheme, typically 8×8 or 16×16. As described above, downsampling does not introduce difficul-

ties in shot change detection, and can be advantageous. Therefore, most shot change detection

techniques developed for uncompressed data can be applied directly to the DC sequence.

Examples of schemes targeting the DC sequence include Yeo and Liu [336], who use pixel dif-

ferencing, and Patel and Sethi [248], who use intensity histogram differencing. Hanjalic describes

a block-matching approach designed to be particularly suited to a DC sequence [135]. Increas-

ingly, researchers present results obtained on both uncompressed and compressed video [104,

105,173].

Several researchers have recognised that edge features can be extracted or approximated

directly from the AC coefficients, resulting in compressed domain analogues of edge matching

techniques. including Lee et al. [194] and Song and Ra [278]. Song and Ra [277] have also

developed a system for prediction of AC coefficients using only the DC coefficients, which has a

lower computational cost than decoding and processing the AC coefficients in the video stream.

One of the earliest schemes targeting compression characteristics, due to Arman et al., used

an innner product of the DCT coefficients in JPEG-encoded video to quantify frame similar-

ity [12, 13]. Bao and Guan [17] use histogram differencing on the DCT coefficients of each

frame.

A significant source of temporal compression in MPEG video is the bi-directional encoding of

some frames. Each frame is made up of macroblocks 16 pixels on a side, and in a bidrectionally

predicted frame (B-frame) each macroblock can be intra-coded (I-block), prediction encoded (P-

block), or bi-directionally encoded (B-block). I-blocks use spatial compression only. P-blocks

are encoded with reference to a preceeding frame, and B-blocks with reference to a succeeding

frame, or both the succeeding and preceding frames. P- and B- blocks, collectively known as

inter-blocks, exploit the temporal redundancy typical in video material. The encoder chooses



3.5. Transition Detection 49

block types within B-frames to maximise compression while preserving fidelity.

Because frames on either side of a shot transition are dissimilar, there is little temporal

redundancy between them. This affects the block types chosen by the encoder for B-frames.

Specifically, a B-frame that is the first frame of a shot will have few or no P-blocks, as the

preceding frames are not useful for compression here. Similarly, where a B-frame is the last

frame of a shot, very few B-blocks will be used. The ratio of B-frames to other frame types is an

encoding parameter, and is generally high enough to facilitate shot change detection by analysis

of B-frames.

Several cut detection methods exploit this property [51,106,176,219,249,250,349]. A method

tuned to video encoded using H.264/AVC compression [205] uses a histogram of the intra-block

prediction modes within a GOP to locate GOPs potentially containing a shot boundary, and

uses the number of macroblocks with different inter-prediction modes within the GOP to localise

the transition.

Each inter-coded block have an associated translational displacement, or motion vector, for

motion-compensated compression. These motion vectors are also useful for transition detection

and classification [109]. Haoran et al.have described a method for extracting both shot transi-

tions and subshot transistions such as camera pan, tilt, and zoom, using the macroblock types

to detect cuts and gradual transistions, and an analysis of the motion vectors to recover camera

motion with a six-parameter affine model [137]. Camera motion from vectors and cut detection

from macroblock types and vectors are also employed by Hesseler [146].

3.4.7 Genre Specific Approaches

Various shot change detection schemes targeting particular genres, particularly sports footage,

have been presented. Rea in [260] characterises the geometry of a scene using the second or-

der moment of the Hough transform; this approach works well for snooker and tennis video.

Tekalp [1] has developed an approach suited to soccer footage, which is robust to changes of

dominant colour.

3.5 Transition Detection

The feature extraction and comparison stage results in a dissimilarity measure between two

frames, denoted δ(t, t′). For similarity comparisons of adjacent frames, the dissimilarity trace

δ(t) can be considered, where δ(t) = δ(t−1, t) and δ(0) = 0. The problem of transition detection

then becomes that of detecting those values of δ(t, t′) which correspond to a shot transition.

Figure 3.7 shows a difference trace created by direct pixel differencing for a sequence of almost

2000 frames from the film ‘La Fille Sur Le Pont’. The locations of scene cuts are indicated by

red circles. It is evident that in some regions of the difference trace, the scene cuts are marked

by isolated spikes in the difference trace. However in more challenging regions of the sequence,
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Figure 3.7: Difference trace over 1924 frames from ‘La Fille Sur Le Pont’, using frame-to-frame

mean absolute difference of intensity values. Cuts are indicated by red circles.

the intra-shot differences are comparable in magnitude to the inter-shot differences. A more

sophisticated frame difference measure would produce a cleaner difference trace, in which the

scene transitions are better separated from intra-shot frame differences. Various degrees of

sophistication can also be applied to the problem of identifying those difference values which

correspond to a transition; it is this aspect of the transition detection problem that is now

considered.

3.5.1 Thresholding

3.5.1.1 Fixed thresholds

The simplest method for transition detection is to detect locations where δ(t) exceeds a fixed

threshold. The set of cut locations C is simply

C = {t : δ(t) > τ} (3.23)

where τ is some empirically determined threshold. This approach is used in numerous sys-

tems [13,174,200,228]. Zabih et al. [344] require that a discontinuity value exceed a threshold,

and also that it be the largest value in some window, before the location is declared a scene

break.

While cuts introduce a single spike in δ(t), over a fade or dissolve transition a lower plateau

may be expected. The twin-comparison method due to Zhang et al. [349] relies on this behaviour

using two thresholds: a high threshold Th, and a low threshold Tl. Wherever the dissimilarity

measure exceeds Th, a cut transition is declared. Potential gradual transitions are supposed
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to start where δ(t) transitions from below Tl to above Tl. If ts is the start of the potential

transition, the end point, te, is the largest t such that

(t > ts) ∧
(
∀t′ ∈ [ts . . . t].δ(t

′) > Tl
)

(3.24)

If the sum of δ(t) over [ts . . . te] exceeds Th, a gradual transition is declared.

Bouthemy et al.employ the cumulative sum Hinkley’s test [18] to detect jumps in the frame

dissimilarity measure in their shot change detection systems [42,43]. They advocate the test on

the strength of its simplicity and low computational load, the fact that the entire signal history

is taken into account, and the suitability of the test for detecting both gradual and abrupt

transitions without modification of the parameters. Two thresholds are required in this scheme;

it is reported in [43] that the same values were found effective over a range of footage types.

Various authors have proposed different schemes for smoothing the difference trace before

applying a fixed threshold for cut detection. For example, Otsuji and Tonomura presented a

projection detecting filter in 1993 [245,246]. This is essentially the application of one-dimensional

dilation and erosion to better isolate peaks due to cuts. It is described as especially effective

at dealing with the effects of film-to-video conversion, slow motion, and animation. Han and

Tewfik describe a progressive nonlinear filtering step to isolate impulsive changes and smooth

gradual transitions [134]. This approach is based on successive smoothing by averaging, but

using the unsmoothed difference value where δ(t) has a high rate of change. They show that

this smoothing is more effective than Gaussian, Wiener, and wavelet-based smoothing. Ewerth

and Freisleben [100, 101] have a refinement for filtering difference traces arising from MPEG

data.

In the work by Bescos et al. [23], an empirically determined fixed threshold is employed,

along with other tests on the local characteristics of the difference trace including the slope, the

average value, and others. Although described as clustering, the process as described is more a

hierarchical decision process.

3.5.1.2 Adaptive thresholds

For the frame difference measures currently proposed, there will be no difference fixed threshold

separating transitions from inter-shot differences in all footage. It is more prudent to use adaptive

thresholding such that the data can itself be used to determine whether a value is significantly

large or not. One of the first systems to use adaptive thresholds was described by Yeo and Liu

in 1995 [336]. Here a shot cut is declared at time t if

(
δ(t) = max({δ(t′) : t−m ≤ t′ ≤ t+m})

)
∧ (δ(t) > nδsm) (3.25)

i.e. where the δ(t) is the maximum value in a sliding window of size 2m, and δ(t) is n times

bigger than the second biggest value in the window, denoted δsm. The second criterion here

is useful in distinguishing camera flashes from shot transitions; although both introduce high
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difference values, a camera will result in two spikes in rapid succession, whereas a shot cut

introduces a single, isolated spike.

Numerous other researchers have adopted similar approaches [36, 247, 263, 343]. Truong et

al.have proposed using a slightly modified ratio test [307]:

c+ δ(t) ≥ n



c+
∑

t′∈{t−m...t+m}t
δ(t′)



 (3.26)

Rather than using a sliding window, the threshold can be determined from consideration of

difference values over the entire sequence. For example, Günsel et al. [130] presented a system

in 1998 using K-means clustering to divide values from a single similarity measure into two

classes, a transition class and a no-transition class. The entropic thresholding described by Sze

et al. [294] chooses the threshold value so as to maximise the combined entropy of the transition

values and the no-transition values.

3.5.2 Multiresolution Transition Detection

While cut transitions can in general be detected by comparing successive frames, gradual tran-

sitions require a wider window of comparison. Here comparisons are made between frames

separated by a skip parameter, typically 15 or 20 frames. The intention is that the interval

should span the transition, or enough of it, such that the frames being compared show a signif-

icant difference. Differencing frames with a high skip parameter increases the effects of camera

and local motion, and so the resulting difference traces tend to be noisier than those calculated

with successive frames.

As well as facilitating detection of gradual transitions, examining the video at a coarse tem-

poral resolution is quicker than comparing all pairs of frames. A fine-grained frame comparison

can then be invoked to isolate a transition identified within the skip interval. The system de-

scribed by Drew et al.in 1999 [89] takes this approach, where a skip of 32 frames is used to

localise transitions and binary search used within the interval for precise detection.

Bescos et al.calculate differences at every multiple of 5 frames from 5 up to 40, and detect shot

transitions at each scale [24]. Intra-shot transitions due to fast camera motion are considered

desirable along with inter-shot transitions. A transition introducing a peak in the difference

trace at one scale will manifest as a plateau at all coarser scales, while a visual discontinuity,

such as a camera flash or large local motion, will result in two peaks at all scales. This property

is exploited to distinguish these two event types.

Chua et al. [65] apply Canny wavelet analysis to colour histogram difference values to detect

both sudden and gradual transitions. The locations of all maxima in the difference trace at the

finest resolution are considered potential transition points. Of these, locations that are not also

maxima at coarser resolutions are rejected as due to noise.
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3.6 Feature fusion

Many features have been described for measuring frame similarity, and it is unlikely that any

single such feature will be appropriate for all footage. Various schemes for combining multiple

features have been proposed to improve the performance of shot detection systems.

One straightforward consideration is that often the simplest and computationally cheapest

features have poor performance, while more sophisticated measures have considerably higher

computational cost. In this situation, the simple method can be applied first, and if it exceeds

a ‘certainty threshold’ τc, a cut is declared. If the difference value is less than τc, but greater

than a ‘possible-cut threshold’ τp, the more expensive similarity measure is invoked to make the

decision. This is the approach adopted by Arman in 1993 [12] for compressed data, where the

inner product of the DCT coefficients is the simple measure, and colour histogram comparison

(which requires full decompression of the frames in question) is used as the expensive measure.

A similar approach has been described by Huang [155].

Various authors have suggested the use of multidimensional clustering to detect video tran-

sitions. Here the values of each of the difference measures are combined to form a feature vector

in a multidimensional space. Ferman and Tekalp use K-means in two dimensions, where the

similarity measures used are a histogram difference and pixel differencing [103]; they report an

improvement over the performance attainable with either measure alone. A similar approach

has been proposed by Gao and Tang [115], using fuzzy c-means in two dimensions; the similarity

measures here are again a histogram difference and pixel differencing.

Ren and Singh in their 2004 paper [262] evaluate both k -nearest neighbour and neural

network classification for detection of cut, fade, dissolve, tilt, and pan transitions. In this

work 18 features are combined, selected from a total of 139 similarity measures using sequential

forward feature selection. It is found that neural network classification slightly outperforms the

k -nn technique, with a 99.7% recognition rate and a 0.3% false alarm rate. The combined-feature

classification approach is shown to outperform histogram comparison and motion comparison

approaches.

Cernekova et al.in 2005 applied clustering to 11-dimensional feature vectors consisting of 10

features from Singular Value Decomposition (SVD) and 1 feature from a mutual information

metric [53]. This approach is referred to as feature level fusion.

Instead of using clustering for classification of difference values, the temporal evolution of the

features can be modelled. The most popular framework applied to this is the Hidden Markov

Model (HMM) approach. One of the earliest such approaches was presented in 1998 by Boreczky

et al. [39]. The dissimilarity measures here are luminance difference, motion vectors, and audio

cepstral vector difference. In this work, each camera transition type is a state in the model.

This limits the capacity of the model to capture within-state temporal behaviour of the feature

vectors. In the more recent work by Bae et al. [15], three HMMs are used: one for each of the

non-transition, gradual transition, and abrupt transition events. The feature vector in this case
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Figure 3.8: A plot showing the variance of intensity values across a dissolve transition. The

start and end points of the transition are marked with red circles.

comprises the frame-to-frame colour histogram difference, the change in low-frequency audio

energy, and differences in colour histogram, texture, and edge distribution evaluated over a

10-frame interval.

3.7 Transition Classification

As described above, transitions in video can be abrupt (cuts), gradual (fades and wipes), or intra-

shot (flash photography, camera motion).The modelling and clustering approaches described

above detect each transition type separately, and further classification is not necessary. However

threshold-based systems do require further analysis to determine what kind of transition has

occurred. Considerable research effort has been expended on examining what features in the

local region of the difference trace, or in the frames in the region of the suspected transition,

can be used for transition classification. Some of these features are examined in this section.

3.7.1 Fade and Dissolve Transitions

The characteristics of dissolve transitions are most easily considered with reference to the dissolve

generation process. In a dissolve, two shots are overlapped and mixed with a dissolve parameter

α which increases monotonically from 0 to 1 over the duration of the dissolve. Each frame within

the dissolve transitions is then generated by

ft(x) = (1 − α)S1
t (x) + αS2

t (x) (3.27)

where S1
t and S2

t are frames from the overlapping shots at time t. In a fade in or fade out, S1

or S2 will be 0 everywhere. Consideration of 3.27 informs most dissolve detection approaches.

One of the earliest recognised characteristics of dissolves arising from this model is that under

most circumstances, the variance of intensity values for frames in the dissolve region will follow



3.7. Transition Classification 55

a downward parabolic curve. To see why, let σ1 and σ2 be the variances of intensity within the

connected shots (assuming here that these variances do not vary with time). The variance of

intensity values within a frame in the dissolve region is then

σt = (1 − αt)
2σ1 + α2

tσ2 (3.28)

and given that 0 ≤ αt ≤ 1, σt will always be less then max(σ1, σ2), and in dissolves generally

less than both σ1 and σ2. In the case of a fade in or a fade out, σ1 or σ2 will be 0, and so the

intensity variance will follow a descending parabola that does not rise from the minimum (0).

This characteristic was first remarked by Alattar in 1993 [8] and has been used in numerous

systems since then [135,219]. Systems detecting frames with zero intensity variance as a starting

point for fade detection have also been proposed [201,306]. Figure 3.8 shows an example of this

behaviour.

Over the duration of a fade in or fade out, assuming that the effects of motion are negligible,

the relative frame difference
ft+1(x) − ft(x)

ft+1(x)
(3.29)

should be a constant. This has been exploited by Corridoni and del Bimbo [68] and Hampapur

et al. [133]. In both papers, it is suggested that a dissolve be modeled as a fade-out followed by

a fade-in. This approach is only effective where the frame-to-frame change is dominated by the

dissolve effect, rather than by any motion in the sequence, and as such it has not been widely

employed since 1995.

The dissolve generation equation can be used as a direct model for the video in the dissolve

transition. In this approach, the frames on either side of the suspected transition are used to

predict intermediate frames, assuming a dissolve is taking place. Comparing the predicted frame

against the observed frame gives an indication of whether a dissolve is actually occurring.

The earliest model-based system is the double chromatic difference (DCD) method, presented

in 1997 by Yu et al. [340]. Here a single frame is synthesised from the frames at either end of

the transition region and compared to all the intervening frames. If the difference values follow

a bowl-shaped curve, the transition is accepted as a dissolve.

The disadvantages of this system are that only one synthesised frame is used for comparison,

and that it is very sensitive to the initial localisation of potential transition locations. These

shortcomings are recognised and addressed in the analysis by synthesis method, presented by

Covell and Ahmed in 2002 [70]. In this approach, an entire dissolve is synthesised between

the endpoints of the suspected transition, and compared frame-by-frame to the observed video.

An advantage of this method is that the region being analysed need not correspond exactly to

the range of the dissolve; partial dissolves can be recognised and merged. In consequence, this

method is much less sensitive to the initial transition detection approach, and in fact almost the

entire video is analysed for dissolve characteristics. Good recall and precision are reported, and

the method is computationally efficient. However, dissolves containing strong camera motion
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cause difficulties, and the authors do not discuss how local motion in the dissolve region affects

performance.

An interesting variant on the use of synthesis for dissolve analysis was presented by Lienhart

in 2001 [203]. Here it is recognised that one drawback to applying machine learning techniques

to dissolve detection is the tedium involved in labelling examples for training. This is overcome

here by deploying a dissolve synthesiser, which can generate an effectively infinite number of

dissolves from a video database. These generated dissolves are used to train a neural-network

classifier, where the features are the contrast strength of the frames and a 24-bin YUV histogram.

A post-processing step applies global motion estimation to filter out transitions due to camera

pans and tilts. The reported performance is a detection rate of 75% and 16% false alarm rate.

The effects of local motion in the dissolve region are not discussed.

A recent model-based approach is described by Denman and Kokaram in [80], in which a

maximum-likelihood method is used to estimate the values of the mix parameter α in a transition

region. If the estimated values follow the pattern expected for a linear mix between two shots,

the transition is declared a dissolve. This approach is one of very few taking explicit account of

local motion in the dissolve region. A full description of the method appears in the next chapter.

Huang and Liao have shown that a difference trace made up of dissimilarity values between

a fixed frame and each following frame has different characteristics depending on whether the

fixed frame is at the start of a dissolve or not [155]. Let δ′(t) be the ‘rooted’ difference trace,

given by

δ′(t) = δ(T, T + t) (3.30)

where T is the index of the frame under consideration. If fT is the first frame of a dissolve, δ′(t)

will increase linearly over the duration of the dissolve, and will subsequently be approximately

constant. If fT is not at the start of a dissolve, but rather in the middle of a contiguous shot,

δ′(t) will increase exponentially up to a limit value. This characteristic is found in dissolves from

a wide range of sources, and the reported performance on gradual transition is 93% recall, 78%

precision.

3.7.2 Wipe Transitions

A wipe transition is a spatial mix between two sources, as opposed to the chromatic mix of a

fade or dissolve transition. In other words, in any frame in the transition region, some fraction

p1 of pixels will take their values from the first shot, and the remaining portion, 1 − p1, from

the second. p1 declines from 1 to 0 over the duration of the transition. The spatial organisation

of the pixel sites varies with the style of wipe transition. For example, the second shot may be

‘revealed’ by a sliding boundary; it may slide in, appearing to displace the first shot; or pixel

sites may be switched from the first shot to the second according to a random schedule. Wipes

very rarely occur in feature film material, but are quite frequently introduced in broadcast sports

footage and home video.
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As the wipe progresses, the image statistics will change smoothly from the values for the

first shot to those for the second. For example, in video where a wipe transition connects two

shots over frames K . . . L, the mean intensity value at frame t will be governed by

m(t) =







m1 if t < K
1
N (p1(n)Nm1 + (1 − p1(n))Nm2) if K ≤ t ≤ L

m2 if t > K

(3.31)

where m1 and m2 are the the means of the two shots (assumed constant), and p1(n) is the

fraction of sites taking their value from the first shot at frame n. A similar equation holds for

the variance of intensity values σ(t) across the wipe transition.

The transition values will follow the same curve shape as p1(t). For example, in a random

wipe the number of pixels from each shot varies linearly, whereas for an iris wipe (in which

the region of the second shot is an expanding rectangle centered in the frame) p1(t) follows a

quadratic curve. In either case, the transition can be detected by consideration of the derivatives

ofm(t): the transition will be delimited by spikes in the second derivative, and the first derivative

will have a non-zero average value over the transition region. This is the basis of one of the

earliest algorithms specifically targeting wipes, presented in 1998 by Alattar [9]. Note that

equation 3.31 assumes that the statistics of the pixels from each shot in the wipe will be the

same as the statistics of the entire frames from each shot. This is more likely to hold true for

wipes where the pixel sites are switched to the second shot in a spatially uniform schedule, such

as a random wipe. For other kinds of wipe, the pixel sites from the second shot will all be from

some small sub-area in the frame, and so their statistics are less likely to be the same as those

of the entire frame in that shot.

A second system for wipe detection based on the center of mass of a frame difference image

was proposed by Yu and Wolf in 1998 [341]. This approach is less versatile than that of Alattar,

in that only ‘sliding’ wipes, where a moving boundary reveals the second shot, can be detected.

The paper is very short on implementation details.

3.7.3 Transition classification from spatio-temporal images

Each of the various transition types introduces a discontinuity on some scale in the spatio-

temporal images described above. Cuts result in a hard vertical edge, dissolves in a soft vertical

edge, and some kinds of wipe result in a diagonal edge. This property has been exploited for

transition detection and classification by a number of researchers. Kim et al.use detection of

lines and curves to locate wipes [171]. Ngo et al.have published numerous systems targeting

spatio-temporal images. One such system applies directed derivative-of-Gaussian and Gabor

filters to characterise the local coherency of the spatio-temporal image; low local coherency

indicates a discontinuity in the image and hence a transition [237, 238]. An adaptive threshold

on local coherency is used to identify cuts; for wipes the Hough transform is applied. They have

also explored the use of tensor histograms [239,240]
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The more recent approach by Bezerra [26] exploits the longest common subsequence of suc-

cessive video slices to detect shot transitions.

3.8 Statistical Hypothesis Testing

The various aspects of transition detection and classification described above include methods

for detecting outliers in the difference trace, incorporating intuitions regarding shot length, and

algorithms for examing video data in the region of a suspected transition to determine whether a

transition is present and what class of transition it is. It is desirable that a shot change detection

algorithm incorporating these aspects should avoid ad-hoc decision processes and arbitrarily

chosen threshold parameters. A Bayesian approach, also called statistical hypothesis testing,

enables combination of these features in a rigorous way and also removes the need for threshold

selection.

For any two frames t and t′, two hypotheses are under consideration:� H0: both frames belong to the same shot (event B̄)� H1: each frame belongs to a different shot (event B)

The optimal decision rule is then that a transition is declared if

p(δ|B)

p(δ|B̄)

∣
∣
∣
∣
δ=δ(t,t′)

>
1 − Pt′(B)

Pt′(B)
(3.32)

Pt′(B) can be decomposed into an a priori probability Pαt′ (B) depending only on the number of

frames since the last declared shot boundary, and a conditional probability Pt′(B|φ(t′)) taking

into account certain features extracted from the video in the region of frame t′ [135].

In these systems, the likelihoods p(δ|B) and p(δ|B̄) are generally determined via fitting

parametric distributions to empirically obtained data.

One of the first presentations of this Bayesian approach is due to Vasconcelos and Lipp-

man [312, 313]. Here the a priori information incorporated is a distribution over shot lengths.

The Poisson, Erlang, and Weibull distributions are considered, where the parameters for each

distribution are obtained via a maximum-likelihood fit to empirically obtained shot-length data.

The Weibull assumption is shown to yield the best performance, resulting in a 20% reduction in

the error rate versus the optimal fixed threshold. The approach is conceptualised as an adaptive

threshold method in which the dissimilarity threshold is very high immediately after a transi-

tion, and decays with distance from the last shot boundary. This behaviour is illustrated in

figure 3.9. The bin-to-bin colour histogram distance is used as the dissimilarity metric.

In 2002, Hanjalic developed this approach further [135]. A more sophisticated similarity

measure based on block matching is used here, for improved resilience to the effects of motion.

Frame similarity is computed for adjacent frames and also over a 22-frame interval, and the

intra-shot distribution p(δ|B̄) is shown to be essentially the same at both scales.
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Figure 3.9: The influence of the Weibull prior on shot duration proposed by Vasconcelos. The

blue line shows the difference values, and the red line shows the threshold value. In the lower

graph, the optimal fixed threshold is shown; the upper graph shows the influence of the prior.

Cut transitions are marked with circles. Reproduced from [313].

The principal contribution of [135] is the introduction of the data-conditional probability

Pt′(B|φ(t′)). This function incorporates examination of data in the region of a suspected tran-

sition, seeking the characteristics corresponding to various transition types. For example, for

cuts, the conditional probability is

φc(k) =







100 · δ(t−1,t)−zsm

δ(t−1,t) %,

if δ(t− 1, t) = max
(
{δ(t − 1, t) : t ∈

(
f = N−1

2 . . . t+ N−1
2 − 1

)
}
)

0 otherwise

(3.33)

where δsm is the second largest value δ in the neighbourhood of t, and N is the size of this

neighbourhood. This encodes the intuition that the dissimilarity across a cut should be much

larger than nearby dissimilarity values. For dissolve transitions, two data-dependent functions

are applied. Firstly, over a dissolve transition, a triangular peak is expected in the dissimilarity

trace at the coarse scale δ(t− 22, t). A function φd1(t) is proposed to detect such peaks, taking

the value 1 if characteristics indicative of a triangular shape centered on k are found, and 0

otherwise. Secondly, as described above, the variance of intensity values for frames across a

dissolve ideally follows a downward-parabolic pattern [8, 219]. A function φd2(t) is introduced

quantifying the relative change in intensity variance between the middle of the window and the

edges to detect this behaviour.

Boccignone et al. [35] use a similar analysis of dissimilarity traces to inform probabilistic

detection of cuts and fades.
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3.9 Directions in Shot Change Detection

At this stage, shot change detection is a very mature area of research and impressive results have

been reported on a wide variety of footage. The broad features of a cut detection system are

unlikely to evolve significantly in future research. Frame-to-frame similarity can be measured

quite reliably, and incorporated into the Bayesian decision framework to allow for prior intuitions.

It is likely that future cut detection work will be increasingly application-specific, and as such

undertaken by industrial researchers. On the other hand, considerable improvement is desirable

in detection of other transitions, such as dissolves and wipes.

The chief difficulty in comparing shot change detection systems is the lack of a common

corpus of video material to form a basis for assessment. The activities of the TRECVID confer-

ence [275] are addressing this concern. Each system submitted to this conference is evaluated

against a large supplied test set of commercial video for which the ground truth data is available.

This makes comparison of different systems considerably easier. At present, the conference cor-

pus is only available to participants, and participation is limited to some eighty institutions per

year. However, as the conference grows it is expected to become the principal focus of research

in shot change detection.



4
New Approaches to Shot Change Detection1

In the previous chapter, a comprehensive review of shot change detection techniques was pre-

sented. In this chapter, two new contributions to the shot change detection problem are pre-

sented. The first is a video analysis technique for detecting dissolve transitions based on direct

modelling of the dissolve process. The second is a refinement to the transition detection tech-

nique described by Hanjalic [135], which improves performance on challenging video sequences.

4.1 Cut Detection

The Bayesian approaches to shot change detection developed by Vasconcelos [313] and Han-

jalic [135] are close to the state of the art. The Bayesian formalism enables combining sophis-

ticated frame similarity measures with a-priori intuitions concerning shot length and feature

analysis from frames in a suspected transition region. The approaches described by these au-

thors can still fail for very difficult sequences. In this section, a very difficult video is analysed

and a number of refinements for cut detection are proposed on the basis of this analysis.

4.1.1 Frame Similarity Measure

As in the previous chapter, the similarity measure between frames t and t′ is denoted δ(t, t′).

For a fixed interval n, δ(t, t−n) is denoted δn(t). The block matching frame similarity measure

1An early version of the work described here was published as “A Multiscale Approach to Shot Change

Detection” by Hugh Denman and Anil Kokaram, in Proceedings of the Irish Machine Vision and Image Processing

Conference (IMVIP ’04), pages 19–25, Dublin, September 2004
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used in [135] is also used in this work. Frame It is divided into B non-overlapping blocks bt(i).

For each block, the most similar block in frame t′ is found. The block similarity measure is the

absolute difference in the average Y, U, and V values of each block:

D(bi(t), bj(t
′)) = |Ȳt,i − Ȳt′,j| + |Ūt,i − Ūt′,j| + |V̄t,i − V̄t′,j| (4.1)

where Ȳt,i is the average value of Y values in block i of frame t. The index of the best match,

b̂t,t′(i), is given by

b̂t,t′(i) = arg min
j

(
D(bi(t), bj(t

′))
)

(4.2)

The frame difference measure is then the sum of most-similar-block differences over the entire

frame:

δ(t, t′) =
1

B

B∑

i=1

D(bt(i), b̂t,t′(i)) (4.3)

This measure is closely related to the Displaced Frame Difference (DFD) as formulated for local

motion estimation.

A number of parameters need to be specified to implement this similarity measure, specif-

ically the block size, the search range, and the search resolution. Appropriate values for these

parameters depend on the resolution of the video and the interval between frames being com-

puted, and also on the desired compromise between computational cost versus motion resilience.

Small block sizes, wide search ranges, and fine search resolution improve the motion resilience

but increase the computational cost, and can also reduce the value of δ(t, t′) across a scene

change, when blocks are matched across the transition. In this work, video is processed at a

resolution of 180 × 144, using square blocks 4 pels on a side, with 1-pixel search resolution. As

in [135], a search range of 1 block (4 pels) is used for computing δ1(t).

As a case study of cut detection in a particularly challenging sequence, figure 4.1 shows

values for the δ1 measure calculated over 2000 frames from the film ‘La Fille Sur Le Pont’. Two

factors make detection of the shot transitions difficult in these signals. Firstly, some shots in this

sequence are very short; for example, those occurring near frames 200 and 1400. These result in

nearby peaks that should both be detected. Secondly, the sequence contains significant motion

and lighting changes, in footage depicting splashing and swimming, and ambulance lights. These

factors result in the high dissimilarity levels between frames 800 and 900, and towards the end

of the sequence. Figure 4.2 shows how a low δ1 value can be found across a cut transition.

Figure 4.3 shows an example of footage where δ1 values between some frames within a shot are

as high as the values across a cut transition.
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(b) Using the block-matching measure in (4.3).

Figure 4.1: Frame similarity traces for a challenging sequence from ‘La Fille Sur Le Pont’. Cut

transitions are shown with red circles.

(a) Four consecutive frames spanning a cut in ‘La Fille Sur Le Pont’
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(b) δ1(t) calculated with a blocksize

of 4 pels.
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(c) δ1(t) calculated with a blocksize

of 8 pels.
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(d) δ1(t) calculated with a blocksize

of 16 pels.

Figure 4.2: A cut for which the block-matching dissimilarity measure δ1(t) gives a low value. In

the dissimilarity signals, the cut illustrated is marked with a green circle, and other cuts in the

sequence are marked with red circles. This is particularly pronounced in the signal produced

using a block size of 16 pels.
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(a) Two consecutive frames across a cut transition from

‘La Fille Sur Le Pont’

(b) Two consecutive frames within a shot from ‘La Fille

Sur Le Pont’
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(c) δ1(t) calculated with a blocksize

of 4 pels.
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(d) δ1(t) calculated with a blocksize

of 8 pels.
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(e) δ1(t) calculated with a blocksize

of 16 pels.

Figure 4.3: This figure illustrates how difference values within a shot can be as large as those

occurring over a cut. The cut shown in (a) is indicated in the difference traces by a red circle.

The location of the pair of frames shown in (b) is indicated by a black circle; these frames are

taken from a shot containing a close-up of flashing ambulance lights with considerable global

motion. A number of the difference values within the shot are comparable in magnitude to that

corresponding to the cut.
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4.1.2 Dissimilarity Likelihood Distributions

The frame difference signal δ1(t) is the starting point for detection of cuts in a video sequence.

It is expected that in the main, peaks in this signal should correspond to cuts in the video. As

described in the previous chapter, in the contemporary Bayesian approach, the optimal decision

rule is to declare that a shot boundary exists between frames t and t′ if

P (δ|B)

P (δ|B̄)

∣
∣
∣
∣
δ=δ(t,t′)

>
1 − Pt(B)

Pt(B)
(4.4)

Here B and B̄ are the events ‘cut has occurred’ and ‘cut has not occurred’, and P (δ|B) and

P (δ|B̄) are found using likelihood distributions determined with reference to ground-truth-

marked video data. Figure 4.4 shows these distributions determined using 170742 frames of

video. The blue curves show parametric probability distribution functions fit to this data; a γ

distribution is used for the within-shot values, and a Gaussian distribution used for the inter-shot

values. The method of moments is used to form an initial estimate of the parameters, followed

by a number of iterations of a maximum-likelihood refinement procedure. Further details of this

approach are given in chapter 6.

If these distribution functions are used directly, then for very low difference values δ, including

δ = 0, P (δ|B) will be greater than P (δ|B̄)—in other words, low δ values will have a higher ‘cut’

likelihood than ‘no cut’ likelihood. There are two reasons for this. Firstly, the γ distribution

for p(δ|B̄) will always assign a value of 0 to the likelihood of a δ value of 0, where the Gaussian

p(δ|B) will be nonzero. Secondly, very low intra-shot δ values may not be encountered in great

numbers in the training set, resulting in the estimated γ distribution taking a low value for

these values—possibly lower than those given by the Gaussian p(δ|B). It is clear that very low

δ values are more likely to be found within a shot than across a shot boundary, and so some

manipulation of the distributions to avoid these effects is justified.

Firstly, before the parameters of the γ distribution for p(δ|B̄) are found, the histogram of

intra-shot δ values is manipulated such that all counts to the left of the mode value, δ̂B̄ , are

set to be equal to the histogram value at the mode. Secondly, the mathematical forms of the

distribution functions are modified, such that

p(δ|B̄) =







1 if δ = 0
(
δ
β

)γ−1
exp

(

−
δ
β

βΓ(γ)

)

otherwise
(4.5)

p(δ|B) =

{

10−7 if δ =< δ̂B
1√

2πσ2
exp

(
−(x−µ)2

2σ2

)

otherwise
(4.6)

Here Γ(x) is the Gamma function

Γ(x) =

∫ ∞

0
t(x−1)e−tdt (4.7)

4.1. Cut Detection 66

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1 γ = 1.83
β = 0.802

(a) Distribution of within-shot values of δ1(t). The

estimated γ distribution is shown. This is an approxi-

mation of p(δ|B̄). N=170742.
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(b) Distribution of values of δ1(t) across shot bound-

aries (cuts). The estimated normal distribution is

shown. This is an approximation of p(δ|B). N = 315.

Figure 4.4

The parameters of the Gaussian distribution can be estimated directly from the data: µ and

and σ2 are the sample mean and variance for values across a cut transition. The parameters of

the Gamma distribution, γ and β, are estimated using the method of moments [72]:

γ =

(
µ′

σ′

)2

, β =
σ′2

µ′
(4.8)

where µ′ and σ′ are the sample mean and standard deviation for values within a shot.

These modifications ensure that p(δ|B̄) < p(δ|B) for δ values less than δ̂B̄ .

4.1.3 Peak Analysis in the δ Signal

Pt(B) is composed of two elements. The a priori distribution Pαt (B) encodes prior knowledge

concerning typical shot lengths, and depends only on the number of frames since the last de-

clared shot boundary. The data-conditional probability Pt(B|ψ(t)) allows additional analysis,

supplementary to the value of δ1(t), to be incorporated via an auxiliary function ψ(t). This can

include analysis of the shape of the δ signal in the region of t′, and / or information obtained

by further examination of the frames in this region.

Peak Shape Function: The peak shape auxiliary function ψ(t) is intended to detect isolated

peaks within some temporal window. A cut should not be declared at a point that is not a local

maximum in δ1(t), so ψ(t) is zero in this case. If δ1(t) is at a maximum within the local window,

ψ(t) is some measure of the magnitude of the peak relative to the values in the window. In [135],
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these considerations lead to the function

ψHC(t) =

{
δ1(t)−zsm

δ1(t) if δ1(t) = maxt′∈(t−10,t+10) δ1(t
′)

0 otherwise
(4.9)

where zsm is the second largest value in the the local window.

In this work, a similar ψ(t) function is used to quantify the peakiness of δ1(t) at a given

point, but a slightly different approach is adopted.

Firstly, two asymmetric neighbourhood regions are used, rather than a symmetric window

centered on the point in question. This is motivated by consideration of material with very high

inter-shot dissimilarity, as shown earlier, where the value of δ1(t) at a shot cut is of comparable

magnitude to some inter-shot values in an adjacent shot. Provided the δ1 value at the cut

is larger than the values typical of the other shot, use of an asymmetric window is helpful in

detecting cuts in such instances.

Secondly, the δ1(t) is evaluated with reference to the distribution of local values, rather than

using the second largest value in a window alone. Using the local distributions in this way means

that rather than modelling difference values entirely in terms of within shot / between shot, to

some extent the difference value process for each shot is modelled. If the δ1(t) value is atypical

of either of the local distributions, a shot change is declared.

The two considerations described above lead to an auxiliary function for cuts of the form

ψ1(t) =

{

max (DL(t),DR(t)) if δ1(t) = maxt′∈(t−3,t+3) δ1(t
′)

0 otherwise
(4.10)

where DL is a measure of the magnitude of δ1(t) compared to the N preceding values

DL(t) = min(100, δ1(t)−µL

σL
) (4.11)

µL = 1
N

∑t−1
t′=t−N δ(t

′, t′ − 1) (4.12)

σL = 1
N−1

∑t−1
t′=t−N (δ(t′, t′ − 1) − µL)2 (4.13)

and DR is a similar measure based on the succeeding values. The window size N used here is 22

frames. Because the use of this window implicitly incorporates an idea of minimum shot length,

a separate shot-duration prior is not incorporated in this approach.

To compare this asymmetric peak shape function to that proposed by Hanjalic, each measure

was applied to the difference values shown in figure 4.1. The performance of each was then char-

acterised by their Receiver Operating Characteristic (ROC) curves. For the measure proposed

by Hanjalic, the area under the ROC was 0.912, and optimal performance, in the sense of the

maximum mean of precision and recall, was 75% recall and 100% precision, obtained with a

threshold of 42. The ψ1(t) measure described above had an area under the ROC of 0.987, with

100% recall and and 91.4% precision obtained using a threshold value of 7.6. The new ψ1(t),

then, offers greater separation of peaks in δ1(t) due to cuts from other values.
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Multiresolution Peak Detection: A second auxiliary function for cuts is introduced using a

multi-resolution approach. Here information from the δ1(t) signal is combined with frame com-

parison at a greater interval, i.e. the δ(t, t−n) signal with n > 1. This facilitates distinguishing

peaks in δ1(t) due to a cuts from those due to some sudden extreme effect such a flashing light.

Where a cut has occurred at some time T , all frames after T are dissimilar to all frames before

T , and so there will be a plateau in δ(t, t− n) from T to T + n. In the case of a peak due to a

sudden event at time T , however, frame T+1 should be similar to frame T +1−n—provided the

event has a duration less than n. Thus if the peak at T is due to a sudden event, the values of

δ(t, t− n) should decline after time T . These considerations lead to a second auxiliary function

for cut detection

ψ2(t) = min
(

1, 1.2 − δn(t)−δn(t+1)
δn(t)

)

× min
(

1, 1.2 − δn(t−1)−δn(t)
δn(t−1)

)

(4.14)

The first term in the product penalises regions where the dissimilarity at time t declines by more

than 20% at time t+ 1. The second term penalises locations where the dissimilarity value has

dropped by over 20% of the previous value. This term is introduced as the δn signal should be

rising, rather than falling, at a cut transition. This additional auxiliary function is combined

with ψt to give the final auxiliary function for cuts ψc(t) = ψ1(t)ψ2(t). Although introducing

the ψ2 has no effect on detection performance using the data in figure 4.1, it can be seen to

attenuate those peaks introduced by extreme factors. Figure 4.5 shows this effect for a subset

of the frames from this sequence.

4.1.4 Mapping The Auxiliary Functions to a Probability

The auxiliary function for cuts must be mapped to a conditional probability P (B|ψc(t)). As

in [135], a soft mapping based on the erf function is employed for this purpose.

P (B|ψc(t)) =
1

2

(

1 + erf

(
ψc(t) − µe

σe

))

(4.15)

where

erf(x) =
2√
π

∫ x

0
e−t

2
dt (4.16)

The values of ψc(t) were found for 170742 frames of video, for which the ground truth data was

previously prepared. Estimates of P (B|ψc(t)) for various values of ψc(t) were determined from

this data, shown by the blue stems in figure 4.6 (a). Inspection of these values suggested µe = 0.5

and σe = 0.001 as appropriate initial parameters. A Nelder-Mead minimisation strategy [235]

was then used to refine the parameters, based on a weighted square error function. It was found

that estimation of the optimal parameters was unstable, due to the very uneven distribution

of the weights. To allow for this, the minimisation procedure was performed 100 times, using

randomly perturbed initial parameters, and the best fit of all iterations accepted. The best fit

curve had parameters µe = 0.283, σe = 0.118; this curve is shown in green in figure 4.6 (a).
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Figure 4.6: Determining P (S|ψ(t) based on 169,000 training frames.
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Figure 4.7: Shot change detection in a challenging sequence: 1000 frames from ‘La Fille Sur

Le Pont’. The blue trace shows p(δ1(t)|B)
p(δ1(t)|B̄)

; red circles on the blue trace indicate the locations of

cuts in the sequence. The green stems show 1−ψc(t)
ψc(t)

. Black stems have been placed where a cut

transition is declared. In this section, one cut is missed, at frame 720.

4.1.5 Performance Evaluation

At this stage, all the elements required to employ the decision rule for cuts

p(δ|B)

p(δ|B̄)

∣
∣
∣
∣
δ=δ1(t)

>
1 − P (B|ψc(t))
P (B|ψc(t))

(4.17)

have been found. Performance on the difficult sequence shown in 4.1 is very good, with 93.75%

recall and 100% precision. An example of the output is shown in 4.7. The measure was also

tested on 12 videos from the TrecVid02 collection, totaling 288702 frames. Here 93.7% recall

was achieved, with 84% precision. The precision here is reduced, however, by the presence

of numerous fast dissolve transitions in the corpus, which are detected as cuts. As these are

instances of shot transitions, they can be considered acceptable detections. When this provision

is made, precision rises to 90%.

4.2 Frame Similarity for Dissolve Detection

Dissolve transition detection is based on three components: the value of a dissimilarity signal,

the shape of the peak in the dissimilarity signal, and examination of the frames in the region
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of the peak. These are combined using the same Bayesian decision framework applied to cut

detection above. The decision rule is

p(δ|B)

p(δ|B̄)

∣
∣
∣
∣
δ=δ22(t)

>
1 − P (B|ψd(t))
P (B|ψd(t))

(4.18)

where δ22 is the dissimilarity signal, described below, and ψd(t) is a data-conditional function

combining consideration of the peak shape with analysis of the frames in the peak region.

In this section, the δ22 signal is described, and an method for peak detection in this signal

is introduced. It is shown that examination of peak shape alone is not sufficient to distinguish

dissolves from other transitions or the effects of motion. Thus examination of the video frames

in peak regions is necessary. In the preceding chapter, two previously proposed methods for

detecting dissolves by examination of frame data were described. Firstly, the variance of inten-

sity values in each frame is expected to follow a downward parabola over the dissolve region.

Secondly, the median pixel-to-pixel intensity difference is expected to be a non-zero constant

over a dissolve region. In the section following this one, a new model-based approach to de-

tecting whether a sequence of frames contains a dissolve is introduced and compared to these

previous methods. The final section of this chapter illustrates how the model-based approach is

incorporated into a dissolve detection system.

In this section and those following, the characteristics and parameters of various components

of a dissolve-detection system are presented. These parameters are computed with reference to

a training set of 288 dissolve transitions (including fades). These transitions were taken from a

training corpus of 170742 frames, consisting of a subset of the TrecVid02 [275] test data.

4.2.1 Similarity Measure and Likelihood Distributions

The block-matching approach to frame similarity is used for dissolve detection as well as cut

detection here. Because the difference between successive frames over a dissolve is generally much

lower than that typical of an abrupt cut transition, the frame dissimilarity must be computed

over some interval of several frames. Comparing frames over a larger interval increases the effects

of pans, zooms, and motion in the video footage, and so the search area for block matching must

be increased. However, this larger search window can reduce the dissimilarity values found

across shot transitions, as the chance of randomly finding a good match for a block across a shot

transition are increased. In this work, as in that described in [135], an interval of 22 frames is

used, applied to videos of dimension 160 × 120 pixels. The block size is 4 pixels on a side, with

a search region width of 40 pixels. The resulting signal is denoted δ22(n) = δ(n, n − 22), which

is the starting point for dissolve detection.

Figure 4.8 (a) shows the distribution of δ22 values within a shot, and the γ distribution used

to approximate p(δ22|B̄). The γ parameter for this distribution is found to be 7.68, considerably

higher than the value 1.83 found for p(δ1|B̄). This is due to the amplification of the effects

of motion by the 22-frame interval. Figure 4.8 (b) shows the distribution of values of δ22
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Figure 4.8

corresponding to dissolve transitions; the largest value of δ22 within each transition region was

taken to build this distribution.

As was done in the case of p(δ1|B̄) and p(δ1|B), the histogram data and distributions are

modified to ensure that for δ values less than the mode value, δ̂B , p(δ|B̄) < p(δ|B). Specifically,

the histogram of intra-shot δ22 values is manipulated such that all counts to the left of δ̂B are set

to be equal to the histogram value at the mode, and the mathematical forms of the distribution

functions are modified such that

p(δ22|B̄) =







1 if δ22 = 0
(
δ22
β

)γ−1
exp

(

−
δ22
β

βΓ(γ)

)

otherwise
(4.19)

p(δ22|B) =

{

10−7 if δ22 =< δ̂B
1√

2πσ2
exp

(
−(x−µ)2

2σ2

)

otherwise
(4.20)

where γ, β, µ, and σ2 are distribution parameters estimated from the data, and Γ(x) is the

Gamma function as before.

4.2.2 Peak Analysis in the δ22 Signal

Figure 4.9 (a) shows the two kinds of peak that are introduced in δ22 by cuts and dissolves. Cuts

are visible as a sharply delineated plateau in the signal, while fades result in a smooth triangular

peak. The specific shape of the peak—the width, height, and the slope of the sides—will be

different for each transition, depending on the dissolve speed and the similarity of the connected
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Figure 4.9: Peak detection in δ22.

shots. Similar smooth peaks may also be introduced in the signal by other kinds of gradual

transition, such as camera pans, or in very active footage. Figure 4.9 (b) shows an example

of peaks in δ22 that do not correspond to gradual transitions in the video. This confirms that

analysis of the similarity signal is not sufficient in itself for dissolve detection; examination of

the video frames in the regions corresponding to these peaks is also necessary.

4.2.2.1 Peak Detection:

Several criteria are combined to detect triangular peaks in the δ22 signal. These are expressed

through the function ψ22(t)

ψ22(t) =







ML(t)MR(t)DL(r)DR(t)KL(t)KR(t)max(PL(t), PR(t))

if δ1(t) = maxt′∈(t−4,t+4) δ(t
′, t′ − 1)

0 otherwise

(4.21)

taking values in the range 0 − 1. The intention is that ψ22(t) should take a high value when

there is a peak at t that matches the triangular shape expected at a dissolve. Each component

of the function accounts for one of the peak shape criteria being applied. Each criterion is

applied twice, to the neighbourhood on the left (indicated by the subscript L), and on the right

(subscripted R), of the point under consideration. The neighbourhood size is fixed at N = 22

frames.

If there is a triangular peak at t in δ22, the largest value in the neighbourhood to either side

should be similar in value to the maximum at t. This is not the case for isolated spikes in δ22(t),

which can be introduced by extreme events such as a camera flash going off. ML(t) is a function
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that ensures that ψ22(t) takes a low value at such isolated spikes. The peak at δ22(t) is penalised

if the maximum in the neighbourhood to the left, ML, is less than 0.9δ22(t), according to

ML(t) = min

(

1, 1.1 − (δ22(t) −ML)

δ22(t)

)

(4.22)

For a triangular peak at t, the location of the largest value in each neighbourhood should

be close to t. DL(t) penalises peaks in δ22(t) where this is not the case, based on how far the

maximum to the left is from t relative to the window size:

DL(t) =

(

1 − (t− IL)

N

)

(4.23)

Here IL is the index of the maximum value in the neighbourhood to the left. This is an additional

penalty on isolated spikes in δ22(t), especially where two such spikes occur in rapid succession.

KL(t) is designed to eliminate the plateaus that are introduced to δ22 due to cuts. This

function penalises the peak at t if there are large discontinuities in the value of δ22(t) in the

neighbourhood to the left. Let M ′
L be the largest absolute difference between successive values

of δ22 in the neighbourhood to the left. Then

KL(t) = max

(

0, 1 − M ′
L

δ22(t)

)

(4.24)

The last component, the function PL(t), gives an indication of the relative magnitude of the

peak at δ22(t), based on the difference between δ22(t) and the minimum value in the neighborhood

to the left, mL, relative to δ22(t). If this is less than 0.3, the maximum is considered ‘not

significant’, and KL(t) is set to 0. If the relative difference is greater than 0.7, no penalty is

applied to the peak at t.

PL(t) = min



1,
max

(

0, δ22(t)−mL

δ22(t) − 0.3
)

0.4



 (4.25)

Performance Assessment: Figures 4.9 (a) and (b) show that the ψ22(t) function is effective

in detecting rounded peaks while rejecting the plateaus introduced by cuts. The ROC curve for

peak detection, using increasing thresholds on ψ22(t), is shown in figure 4.9 (c); the area under

the ROC curve is 78%.

4.2.2.2 Peak Width Estimation

Most peaks due to dissolves in the δ22 signal have clearly visible start and end points. Where

a peak does correspond to a dissolve, the dissolve transition starts at the start of the peak and

ends 22 frames before the end of the peak. Estimating the start and end points of a peak is

then useful in two ways. It gives an indication of which frames should be examined for dissolve

characteristics, as described in the next section, and also means that where a dissolve is detected,

an estimate can be given of its start and end frames.
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Figure 4.10: Peaks corresponding to dissolves in δ22(t). The red stems show the start and end

frames of the dissolves. The black stem marks the frame 22 frames after the end of the dissolve.

Figure 4.10 illustrates some of the peak shapes typical of dissolves in δ22. The correspondence

between the peak extent and the frames in the dissolve is clear. Three methods for estimating

the peak extent have been investigated, and these are now described. Once a peak has been

identified, the values of d22 on either side are examined to find the end of the peak on that side.

Each side of the maximum is treated identically; the problem is essentially one of changepoint

detection in these windows. The window is designated W (t).

Line fitting: The first approach adopted relies on fitting a line to the first N values in the

window, and detecting where the fit between the line and the window values starts to exceed

some threshold. Here N is set to 20, and an iteratively reweighted least squares scheme is used

to estimate the line parameters, o, λ. The threshold E1 is the maximum squared error over the

first N frames of the window:

E1 = max{(W (t) − (o+ λ · t))2} (4.26)

A ‘large error’ signal, L(t), is then found, according to

L(t) =

{

1 if (W (t) − (o+ λ · t))2 > E1

0 otherwise
(4.27)

This signal is then filtered with a 5-tap median filter to produce L̂(t). The changepoint is then

defined as

c1 = min{t : ∀t′ > t.L̂(t) == 1} (4.28)

On-line Slope Change Detection: In this approach, the changepoint is declared at the first
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Method Ēs σ2
Es

Ēe σ2
Ee

Line fit 0.48 60.385 0.13 29.5

Slope Change 1.05 61.61 1.02 55.94

Gaussian Separation 0.88 55.255 -0.36 23.1

Table 4.1: Peak start and end detection performance. Ēs and σ2
Es

are the mean and variance

of the error in estimating the peak start. Ēe and σ2
Ee

are the mean and variance of the error in

estimating the peak end.

index where the window value stops descending.

c2 = min{c : meanc′∈{c,c+4}(W (c′)) ≤ meanc′∈{c+5,c+9}(W (c′))} (4.29)

This is an on-line method, and as such is insensitive to the window size used.

Separation of Gaussians: Here it is assumed that the derivative of the window can be

modelled as two sequential Gaussian distributions, one for the peak descent and one for the

post-descent region. The changepoint is declared at c3, where

c3 = arg max
c∈{12...|W |−8}

m2(c) −m1(c)

σ2(c)σ1(c)
(4.30)

where m1(c) and σ1(c) are the mean and variance of W (t) −W (t − 1) over 1 . . . c, and m2(c)

and σ2(c) are the mean and variance of W (t)−W (t− 1) from c+1 to the end of the window. A

separation point where the slope increases is desired, rather than one where the slope decreases.

Therefore the absolute value of the distance is not taken. This is a global method, and is

observed to give very good results when the window stretches over two distinct regions, the side

of the peak and a flat or ascending following region. The method is prone to failure when values

from an adjacent peak are included in the window.

Performance Assessment: The d22 signal for the videos in the training set was found, and

the peak detection procedure ψ22(t) applied. Those peaks for which ψ22(t) > 0.1, which also

corresponded to a dissolve, were found. The start and end points of these peaks were estimated,

and compared to the start and end points of the dissolve as indicated by the ground truth.

Table 4.1 shows the results of this assessment. Detection of peak end-points is more reliable

than detection of peak start points for all methods. This can be ascribed to the fact that for most

peaks, the descent is smoother than the ascent. The Gaussian separation method is adopted for

finding the peak start- and end-points.

4.3 Model-Based Dissolve Estimation

As described in the previous chapter, gradual transitions in video may be inter-shot transitions

introduced by editing, such as dissolves or wipes, or they may be intra-shot transitions due to
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camera motion or lighting changes. Such gradual transitions are typically detected by frame

differencing at a coarse temporal scale, i.e. with an interval of 10 or 20 frame times between the

frames being compared. Once a coarse-scale transition has been identified, the question of how

to identify the kind of gradual transition arises. In this section a dissolve modeling approach is

introduced. Assuming that the transition region does contain a dissolve, a dissolve parameter

α is estimated for each frame. The values for each frame form an α-curve, and examination of

this curve then informs classification of the video region as being a dissolve, or otherwise.

4.3.1 Dissolve model

A dissolve is made by mixing two shots chromatically, according to a mix parameter α. The

values in each channel of the transition are generated by

It(x) = (α)I1
t (x) + (1 − α)I2

t (x) (4.31)

where x is a pixel site, I1
t and I2

t are images from the two overlapping shots at time t, and It is

the final composited image.

Given the images I1
t , I

2
t , and It at a particular time t, the likelihood of a dissolve parameter

value α is governed by

p(α|I1
t , I

2
t , It) ∝ exp(−

∑

x

[
It(x) − (αI1

t (x) + (1 − α)I2
t (x))

]2
) (4.32)

However, in general the unmixed frames I1
t , I

2
t are not available. To facilitate analysis, the

contents of the two shots over the dissolve region are approximated using two template frames,

designated IT0 and IT1 . These frames are chosen from positions preceding and succeeding the

transition region. The image predicted by this model for a given crossdissolve strength α is

designated IM(α), where

IM(α)(x) = αIT0(x) + (1 − α)IT1(x) (4.33)

The likelihood of a given value of α can now be approximated using the agreement between the

image predicted by the model and the observed image at time t:

p(α|It) ∝ exp(−
∑

x

[
It(x) − IM(α)(x)

]2
) (4.34)

The maximum-likelihood value of alpha given IT0, IT1 , It can be estimated by solving

d

dα
p(α|It) = 0 (4.35)

and it transpires that the optimal value is given by

αopt =

∑
It∇T0,T1 −

∑
IT1∇T0,T1

∑∇2
T0,T1

(4.36)

where ∇T0,T1 is the difference image IT0 − IT1 . The derivation is presented in appendix A.
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The assumption underpinning this model is that the template frames IT0 and IT1 closely

approximate the actual frames mixed in the dissolve transition. For ideal dissolves, in which

two static shots are mixed, this will be be the case. However, this will not hold where the shots

contain camera or object motion in the dissolve region. These motion effects are now considered

and addressed.

4.3.2 Global motion

Changes in camera orientation and zoom introduce a difference between successive frames that

reduces the extent to which a template image IT0 is representative of the frames in a shot. To

counteract this effect, global motion compensation is applied. Any global motion estimation

technique can be employed; in this work a robust estimator presented by Odobez and Bouthemy

is used [244]. A six-parameter affine motion model is used; the motion parameters between

frames It, It′ are a 2 × 2 matrix A and a displacement vector d. For image content subject to

global motion, the two frames will be related by

It′(x) = It(Ax + d) (4.37)

For convenience of computation, the affine parameters are combined into a matrix M

M(t,t′) =






A00 A01 0

A10 A11 0

d0 d1 1




 (4.38)

which can be applied to homogeneous coordinates.

For the purposes of α-curve estimation, the global motion is estimated between every pair of

frames It, It+1. This is the forward global motion. The backward global motion is the parameters

relating frame It+1 to It, and is assumed here to be the inverse of the forward parameters, i.e.

M(t+1,t) ≈ (M(t,t+1))
−1.

These parameters are then used to compensate both template images to register them with

image It before the estimation of α is carried out. Rather than estimate M(T0,t) directly, the

intermediate global motion estimates are combined according to

M(T0,t) ≈
t−1∏

t′=T0

M(t′,t′+1) (4.39)

and the cumulative backward motion is found similarly.

After these compensations, only a partial region of each template frame will contain valid

data. Estimation of α is performed over the area of intersection of the two valid regions. One

potential difficulty here is that where the global motion is very fast, the valid regions of the

temporal frames will have no overlap. For example, the motion M(T0,t), with t = T0 + 10, may

be so large that IT0 and It have no content in common. Where this happens, there is no basis
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(a) 0-diff method
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(b) 1-diff method

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Error at centre pixel

F
ra

ct
io

n
 o

f 
fr

a
m

e
 p

a
ir

s

(c) 3-diff method

Figure 4.11: Global motion prediction errors for three different prediction orders. The data set

was 14399 frames of broadcast cricket footage, containing a wide variety of camera motion types.

for estimating α using the template frames. Such fast global motion is very rarely encountered

in standard video, and still less often within a dissolve region. If no common region is available,

then, the transition is classified as ‘not a dissolve’.

Estimation of the global motion M(T0,t) may be particularly difficult if there is a partial

dissolve between frames IT0 and It, as the global motion estimation cannot take the effects of

the dissolve into account. One approach to this problem is to rely on extrapolating global motion

parameters from the frames outside the suspected transition into the transition range, rather

than using motion estimation within this region. Three simple prediction methods are assessed

here, generated by

M0
(T0,t)

=
(
M(T0,T0+1)

)(t−T0)
0-diff method (4.40)

M1
(T0,t)

=
∏(t−T0)−1
i=0 M(T0,T0+1) + i

(
M(T0,T0+1) − M(T0−1,T0)

)
1-diff method (4.41)

M3
(T0,t)

=
∏(t−T0)−1
i=0 M(T0,T0+1) + i (∇M) 3-diff method (4.42)

where ∇M = 1
3

∑2
i=0 M(T0−i,T0−i+1) − M(T0−i−1,T0−i) (4.43)

The 0-diff method assumes that the global motion is essentially constant over short intervals. In

the the 1-diff method, each parameter is modeled linearly; in other words, here dM
dt is assumed

constant. The 3-diff method relies on the same assumption, but incorporates a smoothing of the

slope by taking the average of three preceding values of dMdt . The performance of these prediction

methods over an interval of 10 frames over within-shot footage (i.e. footage not containing cuts

or partial dissolves) is shown in figure 4.11. Equation 4.39 is used to generate the correct M(T0,t).

The error measure employed is the displacement of the centre pixel, for example

e0 =
∣
∣
∣

(

0 0 1
)(

M(T0,t) − M0
(T0,t)

)∣
∣
∣ (4.44)

Figure 4.11 shows that none of these measures is consistently reliable for prediction over a 10-

frame interval. Furthermore, it is found that simply using global motion estimation directly

across the fade region results in acceptable α-curves over a wide variety of dissolve transitions.

For these reasons, the use of motion extrapolation has not been pursued.
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(a) IT0
(frame 487) (b) It (frame 507) (c) IT1

(frame 527) (d) Residual image, Ie

Figure 4.12: Residual image after one iteration of α estimation for a cut. It can be seen that the

highest residual values correspond to local motion in this example. These locations are assigned

a low weight in subsequent iterations. In this example, the inital value for α is 0.944, and after

10 iterations it has risen to 0.985, closer to the ideal value of 1.0.

4.3.3 Local motion

Local motion in the dissolve region will introduce localised discrepancies between the template

image and the current frame. These discrepancies violate the fade model assumptions, and so

confound the α estimation process. This local motion effect can be greatly reduced using an

iteratively reweighted least-squares (IRLS) method. The idea is to assign a low weight to pixel

sites where the model error is very high, to reduce the influence of these sites on the α estimation.

An estimate for α is obtained by maximizing the weighted likelihood

p(α|It) ∝ exp(−
∑

x

w(x)
[
It(x) − IM(α)(x)

]2
) (4.45)

at each iteration, using

αopt =

∑
w2
t It∇T0,T1 −

∑
IT1w

2
t∇T0,T1

∑
w2
t∇2

T0,T1

(4.46)

For the first iterations, the weights are initialised to 1 everywhere. The weights are updated

according to the residual image, Ie = IM(α) − It, according to

w(x) = 1
(1+r2(x)) (4.47)

where r(x) = Ie(x)

τs
√

(1−h(x))
(4.48)

s = median(|Ie−median(Ie)|)
0.6745 (4.49)

h(x) = I2e (x)
∑

x
I2e (x)

(4.50)

This is a Cauchy weighting function where the residuals Ie(x) are being scaled to take into

account the leverage h. s is a robust estimator for the standard deviation of the residuals. τ

is a tuning constant; the value 2.385 is standard for Cauchy weighting. Further details on this

approach are available in any work on robust statistics, such as [156].

The estimation is terminated when either of two conditions is met:
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The appropriate thresholds must be chosen; currently α estimation is discontinued if less than

2% of the image has an error of more than 20 graylevels, and the number of iterations is limited

to 10. These limits have been found to generate good results for a variety of sequences. In

general termination will only be triggered by the first condition in sequences with negligible

local motion; for many sequences, the procedure runs to the limit of iterations. It is observed

that the value of α found has almost always stabilised at this stage.

Figure 4.12 shows the residuals found for α estimation across a cut transition.

4.3.4 Examples of α-curves

Figure 4.13 shows α-curves calculated for a variety of sections of footage. The characteristic

shape of the α-curve for a dissolve transition is shown in figure 4.13 (c). This is made up of

three regions: where α is close to 1, as frames are from the first shot; a smoothly descending

region within which α changes from 1 to 0 (usually linearly); and a final flat region where the

frames are from the second shot, where α is close to 0.

The figure shows α-curves for some other transition types as well. The curves for the cut and

wipe transitions are somewhat similar to that of the dissolve transition, differing in the steepness

of the transition region. Cuts result in a large drop in the α value across the cut boundary, while

wipes introduce a descent region steeper than that of the typical dissolve. However, dissolves

of only one frame’s duration have been observed. These cannot be distinguished from wipes on

the basis of the α-curve alone.

The effectiveness of the motion compensating techniques described above is illustrated in

figure 4.14. Some frames from a particularly difficult dissolve is shown in figure 4.14 (a). Here

there is a fast pan in both shots over the dissolve region, and significant local motion is also

present. Figures 4.14 (b)-(d) show the α-curves found by estimation over these frames with

each combination of global and local motion compensation. Only when both global motion

compensation and local motion reweighting are applied is the α-curve shape characteristic of a

dissolve observed.

4.3.5 Longer Dissolves

The examples shown thus far have shown dissolves of between ten and twenty frames’ duration.

Some dissolves can be considerably longer, which has implications for their characterisation by

this method. In particular, the template images may be less representative of the shot content

within the transition. In archival footage, the increased transition length means that there is

a greater probability of some defect, such as flicker or large blotches, occurring in the footage

and violating the dissolve model. These considerations are offset to some degree by the fact

4.3. Model-Based Dissolve Estimation 82

1120 1130 1140 1150 1160

0

0.2

0.4

0.6

0.8

1

Frame Number

α 
va

lu
e

(a) α-curve over a static shot
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(c) α-curve over a dissolve transition
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(d) α-curve across a wipe transition
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(e) α-curve over a camera zoom transition

Figure 4.13: α-curves for a variety of shot content types.
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(a) A dissolve between two shots with significant global and local motion.
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(c) Local motion reweighting only
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(d) Global motion compensation only
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(e) Global motion compensation and local

motion reweighting

Figure 4.14: Alpha estimation across a fast dissolve with significant global and local motion.

The dissolve starts at frame 19 and ends at frame 27.
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(a) Analysis over 80 frames.
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(b) Analysis over adjacent windows of 40 frames

each. The dashed vertical line indicates where the

curves have been joined.

Figure 4.15: Alpha traces computed over a 70 frame dissolve.

that stylistically, longer transitions are generally considered appropriate for footage with little

motion. In less active footage, the template frames will be representative of the shot content

over a wider temporal range.

The dissolve model equation is also valid over a partial dissolve region. This can be exploited

to improve performance in analysis of a long transition region. The area of the video containing

the suspected transition can be split into two non-overlapping windows, and the α-curve for

each computed separately. Let the transition region under investigation consist of N frames.

This range is split at frames S = N/2, and the α-curves for each region, denoted αa and αb, are

found. The overall curve α(t) is found by

α(t) =

{

0.5 + 0.5α1(t), if 0 ≤ t < S

0.5α2(t− S), if S ≤ t ≤ N
(4.51)

Figure 4.15 shows an example of α values computed over a long (70 frame) dissolve. In

figure 4.15 (a), the values are computed over the entire transition duration in one pass, whereas

in figure 4.15 (b) the values are found over two adjacent windows. The second trace improves on

the first in a number of respects. The downward sloping region corresponds more closely to the

actual duration of the dissolve; the flat regions corresponding to the regions outside the dissolve

transition are smoother; and the spike in the curve at frame 14225, which is due to momentary

strong flicker in the video, is considerably attenuated in the second trace. This factors make

analysis of the dissolve curve easier, as described below.
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4.3.6 Changepoints in the α-curve

The α values for each frame in the transition region form the α-curve. The transition is to be

classified as a dissolve or not a dissolve on the basis of this curve. It has been observed that the

α-curve over a dissolve transition consists of two flat regions connected by a smoothly descending

transition region corresponding to the duration of the dissolve. Classification of α-curves into

those corresponding to dissolves versus other transitions is based on the assumption that each

of the three segments can be modelled as approximately linear. The method is to fit three lines

to consecutive segments of the curve. If these fits have a low error, and the slopes of the lines

correspond with those expected for a dissolve, the curve is classified as such.

A general-purpose model estimation technique, such as Expectation Maximization (EM),

could be used to find an optimal three-line fit to the curve. However, these techniques are not

generally designed to exploit a priori information regarding the ordering of the data. In this

case, it is known that the points assigned to each line will be adjacent, and so the problem

reduces to finding the optimal changepoints along the curve. While numerous sophisticated

changepoint detection have been presented, a simple exhaustive search approach is adopted

here. Two changepoints need to be found, so an exhaustive search is an order N2 computation,

where N is the length of the curve. The curve only contains 40 to 80 values, so the computation

is feasible.

For an α-curve ranging over frames T1 . . . T2, the optimal changepoints C = {ĉ1, ĉ2} are

found by solving

C = arg min
c1,c2

(ωE(T1, c1) + E(c1, c2) + ωE(c2, T2)) (4.52)

using exhaustive search, with the constraints c1 < T2 − 5 and c2 > c1 + 2. E(t1, t2) is a sum

squared error function describing how well the points t1 . . . t2 along the α-curve can be modelled

using a line:

E(t1, t2) =

t2∑

t=t1

(O(t1, t2) + (t− t1)λ(t1, t2) − α(t))2 (4.53)

O(t1, t2) and λ(t1, t2) are the least-squares estimate of the parameters of the line along the α-

curve over t1 . . . t2. ω is a weight intended to bias the procedure such that a good fit in the first

and third segments is more important than a good fit over the second (dissolve) section. This

is introduced because the value of α may not change linearly over the dissolve; for example, a

manually controlled dissolve will have a more rounded α-curve.

To evaluate the accuracy of this changepoint detection method, the α-curves and change-

points of the dissolve transitions in the training data were found. The changepoints of each

α-curve were found, and compared to the start and end of the dissolve transitions as indicated

by the ground truth data. Let E1 be the error in estimating the dissolve start from the α-curve

(in frames), and E2 be the error in estimating the dissolve end. The mean and variance of these

two error measures over the 288 dissolves in the training set were found as shown in table 4.2.
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ω Ē1 σ2
E1

Ē2 σ2
E2

20 0.788194 5.46369 -1.40278 6.97309

21 0.621528 5.05835 -1.0625 4.64416

22 0.517361 4.81503 -0.961806 4.62223

23 0.368056 4.51215 -0.857639 4.24099

24 0.211806 4.23721 -0.670139 4.57722

25 0.0173611 4.35858 -0.4375 4.58841

26 -0.305556 4.82617 -0.138889 5.14441

27 -0.628472 5.89285 0.1875 5.3027

28 -0.986111 7.28204 0.545139 6.21398

29 -1.40972 8.44478 0.9375 6.92988

210 -2.01736 8.81851 1.55903 7.84319

Table 4.2: Performance of dissolve endpoint detection based on α-curve analysis, for different

values of ω.

It is evident that ω values greater than unity improve performance up to about 25; this is the

value is adopted for use in the procedure.

Figure 4.16 shows some examples of α-curves partitioned using the method described above.

In the figures in the left column, ω is set to 1, i.e. no weighting. In the figures in the right

column, ω is set to 25 = 32, as described in the previous paragraph. The value of ω has no

effect on the segmentation in example (a), as this α-curve is almost perfectly linear in each of

the three segments.

In example (b), the non-linearity of the α-curve in the dissolve section has resulted in a mis-

segmentation for ω = 1. With ω = 32, errors in the dissolve section are preferred to errors in the

first and third sections, allowing for the non-linearity and resulting in an accurate segmentation.

The line-fitting procedure is such that points in the pre- and post-dissolve regions of the

α-curve can be assigned to the middle segment even when they have a lower error when assigned

to an adjacent segment. This occurs where the α-curve is noisy in the dissolve region. Example

(c) illustrates a case where this has occurred.

The use of ω > 1 can cause problems where the pre- and post-dissolve regions are noisy,

as shown in example (d). Here the start of the dissolve is missed by 6 frames where ω = 32,

as opposed to 2 frames when ω = 1. On the other hand, detection of the dissolve end is

more accurate with ω = 32. The results in table 4.2 suggest that non-linear dissolves are more

common than non-linear pre- and post-dissolve regions, as overall detection performance is best

with ω = 32.

Various adjustments to the line-fitting procedure were investigated to address the issues

raised by examples (c) and (d) above. In example (c), noise in the dissolve region of the α-curve
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(a) Linear dissolve.
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(b) Non-linear dissolve.
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(c) Noisy, non-linear dissolve.
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(d) Non-linear dissolve with non-linear pre-dissolve region.

Figure 4.16: Examples of α-curves and the lines fitted to them. The ground truth data for the

dissolve region is indicated by black circles. The detected changepoints are indicated by red

circles.
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resulted in the some points of the flat, post-dissolve region being assigned to the dissolve region.

Two refinements to address this were evaluated. The first was an alternative fitness function,

designed to encourage a segmentation with as short a dissolve region as possible while ignoring

the goodness-of-fit of the line over the dissolve region. Here the changepoint estimation equation

was modified to

C = arg min
c1,c2

(
ω′(c2 − c1) + E(T1, c1) + E(c2, T2)

)
(4.54)

Performance of this measure was evaluated for values of ω′ ranging from 2−15 to 2−25 (i.e. of

comparable magnitude to the mean squared error of the lines fit in the pre- and post-dissolve

regions). However, no value of ω′ resulted in detection performance better than that obtained

with ω = 32.

The second modification investigated was to refine the changepoints after the best-fit lines

had been found. Let Oi and λi be the parameters of the line i. The pre- and post- dissolve

regions α-curve are then extended to the last point that is closer to the associated line than

either of the other two, as follows:

ĉ1 = sup{c1 : E(O1, λ1, c1) < min (E(O2, λ2, c1), E(O3, λ3, c1))}
ĉ2 = inf{c2 : E(O3, λ3, c2) < min (E(O1, λ1, c2), E(O2, λ2, c2))} (4.55)

Here E(O1, λ1, c1) is the squared distance from α(c1) to the line defined by (O1, λ1). While

this did improve performance in some cases (including that illustrated in example (c) above),

segmentation performance overall was not greatly affected.

Example (d) illustrates the problems that arise with non-linear pre- and post-dissolve regions.

An Iteratively Reweighted Least Squares (IRLS) technique for estimation of the line parameters

(O,λ) within the exhaustive search procedure was implemented to address these issues. This

was not found to improve performance, and increased processing time considerably.

4.3.7 Dissolve Detection using the α-curve

The technique discussed above is a means to identify the dissolve start and end points, given an

α-curve generated from a sequence in which a dissolve does occur. Deciding whether a sequence

contains a dissolve, based on analysis of the α-curve, is a separate issue.

Eight parameters of the segmented α-curve are exploited for this purpose. These are the

slopes of the three line segments, denoted λ1−3; the error in estimation of the dissolve start

and end points relative to other indicators, denoted ĉ1,2; and the error in the line fit over each

segment, E1−3.

These heuristics are used to generate an Bayesian α-curve classifier, using likelihood dis-

tributions for each parameter. For example, for the slope of the first linear segment λ1, the

distributions p(λ1|D) and p(λ1|D̄) are found, where D is the event ‘dissolve’. An α-curve can

be classified as corresponding to a dissolve (event D) or a non-dissolve (event D̄) based on

comparison of these likelihood distributions.
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The ψ22(t) function described in the previous section is used to identify candidate regions

in the training set; α-curve estimation is undertaken everywhere ψ22(t) > 0. These frames

correspond to peaks in d22. The width of the peak is estimated as in the previous section.

Denote the estimated peak start and endpoints by Ps and Pe. As outlined above, the end of the

dissolve is expected to be at Pe − 22, as frames are compared over a 22 frame interval. α-curve

estimation is then carried out over the frames T1 = Ps− 10 . . . T2 = Pe− 22+ 10, i.e. ten frames

are added on either side of the expected dissolve region. The changepoints in the α-curve should

then be found ten frames from either end. The ĉ1,2 metrics used for classification of the α-curves

are then defined by

ĉ1 =
|c1 − 10|
T2 − T1

(4.56)

ĉ2 =
|10 − (T2 − c1)|

T2 − T1
(4.57)

Figures 4.17 - 4.19 show the distributions of these metrics for dissolve and non-dissolve α-

curves.The distributions of the slope metrics λ1 and λ3, as well as the line fit errors, are modelled

with exponential distributions. The distributions of slope over R2 are modelled as Gaussians,

and the changepoint error metrics c1,2 are modelled using a gamma function. Some metrics are

multiplied by a constant to increase their range of values; these constants are indicated in the

figures. Some of the distributions for the non-dissolve metrics have spikes at the upper end of

the range of values that are not explicitly modelled by the approximating function. This is not

of concern, however, as in all cases the approximating function of the non-dissolve regions is

several orders of magnitude larger than that of the dissolve regions for these values.

Classifying an α-curve as either a dissolve transition or not can then be achieved by evaluation

of

ψ′
α =

P (λ1, λ2, λ3, ĉ1, ĉ2, E1, E2, E2|D)P (D)

P (λ1, λ2, λ3, ĉ1, ĉ2, E1, E2, E2|D̄)P (D̄)
(4.58)

' P (λ1|D)P (λ2|D)P (λ3|D)P (ĉ1|D)P (ĉ2|D)P (E1|D)P (E2|D)P (E2|D)P (D)

P (λ1|D̄)P (λ2|D̄)P (λ3|D̄)P (ĉ1|D̄)P (ĉ2|D̄)P (E1|D̄)P (E2|D̄)P (E2|D̄)P (D̄)

If ψ′
α > 1, the likelihood distributions suggest that the α-curve corresponds to a transition. The

prior probability for the presence of a dissolve, P (D), was found to be 0.0932, with P (D̄) =

1 − P (D).

4.3.8 Comparison to other dissolve-detection metrics

As described in the previous chapter, other measures have been proposed for dissolve analysis,

intended to be used in a similar fashion to the α-curve. The median relative frame difference [68,

133] is defined as

M(t) = median
x

(
It(x) − It−1(x)

It(x)

)

(4.59)
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Figure 4.17: Distributions of α-curve slope metrics
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Figure 4.18: Distributions of α-curve changepoint metrics

which should be zero within a shot, and some non-zero constant over a dissolve. The variance

of intenstity values [8] is simply

σ(t) = varx (It(x)) (4.60)

which should follow a downward parabola over the dissolve region. Two aspects of these signals

are under discussion here. Firstly, the overall quality of each of the signals can be considered,

i.e. how well they conform to their expected shape over a dissolve region. Figure 4.20 shows

the curves generated by each of these measures over a dissolve from a cricket sequence. For

this dissolve, the α-curve generates a smoother sequence of values than either of the other two

measures. A separate question is how to quantify how close the curve is to the shape expected

for a dissolve. This is achieved via some shape analysis function ψ(t), similar to the peak shape
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Figure 4.19: Distributions of α-curve line-fit error metrics
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(a) Frames from a dissolve transition in cricket footage
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(c) Variance of intensity values [8]
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Figure 4.20: Three different means of characterising frames for dissolve detection. The α-curve

is the ‘best-behaved’ measure.

analysis functions applied to the δ(t) signals above.

To further examine the relative reliability of the three dissolve characteristics above, the

median difference, intensity variance, and α-curves were found for the dissolves in the training

set. For each dissolve in the training corpus, three regions were defined: the pre-dissolve region,

r1, consisting of 10 frames before the start of the dissolve; the dissolve region, r2, consisting of

the dissolve frames; and the post-dissolve region, r3, consisting of 10 frames after the end of the

dissolve. The properties of M(t), σ(t), and α(t) in each of these regions, for each dissolve, are

used to characterise their reliability.

Median frame-to-frame relative intensity difference: M(t), is expected to be zero within

a shot, and non-zero within a dissolve transition. Figure 4.21 shows how well the dissolves in

the training corpus conform to these criteria. Within the pre- and post-dissolve regions, the

fraction of frames having a zero median intensity difference is close to 1 for most of the dissolves

in the training set. However, the fraction of frames for which M(t) is nonzero within r2 is much

more variable. For almost 15% of the 288 training dissolves, M(t) = 0 for all frames in r2; these

are found to be gradual dissolves between similar scenes. On this evidence, the median relative

intensity difference is not a very reliable tool for dissolve detection.

Variance of frame intensity values: It was shown in the previous chapter that the variance of
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Figure 4.21: The reliability of the median intensity difference as a dissolve detection metric.

intensity values of frames within a dissolve should be less than that of the frames in the adjoining

shots. Figure 4.22 (a) illustrates an example of a well-formed σ(t) signal over a dissolve. The

curve is flat over r1 and r3, and dips in a downward-parabolic shape over r2.

It is notable that the frame having minimum variance within the dissolve, designated t̂, is

not always in the middle of the dissolve. Where one of the connected shots has a much lower

characteristic intensity variance than the other, the minimum value is at the start or end of the

dissolve. The curve in this case is smoothly descending or ascending, as shown in the example

in 4.22 (b). Fade transitions are a particular instance of this, as one of the connected shots is

black and therefore has a variance of zero. Of the 288 dissolves in the training set, 18, or 6.25%,

exhibit a descending or ascending σ(t) curve.

The relative position D(r2) is a measure of how far the t̂ is from the midpoint of the dissolve,

r̄2:

D(r2) = 2 (t̂−r̄2)
|r2| , where r̄2 = max(r2)+min(r2)

2 (4.61)

In a dissolve for which D(r2) = 0, t̂ is exactly in the middle of r2. Where D(r2) = ±1, the

minimum is at one end. Figure 4.22 (c) shows the distribution of DR(2) for the dissolves in the

training set. While 0 is the mode value, most of the dissolves exhibit some measure of assymetry.

A shape function, ψ(t), is required to quantify how well a given σ-curve corresponds to one of

the shapes characteristic of a dissolve. Hanjalic uses the function shown in equation 4.62 [135].

This function is based on the assumption that the variance of a frame in the middle of a dissolve

should be less than that of the frames at either side of the transition. N here is the size of

the analysis window, set to 21 frames. The function is applied at a point t′ = t − 11, where

t is the location of a maximum in δ22, and 11 corresponds to half the interval used for frame

differencing. Figure 4.23 shows the values taken by ψH(t) over the dissolves in the training set.
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Figure 4.22: Variance of intensity values in frames over a dissolve transition.
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Figure 4.23: Values of ψH(t) for the dissolves in the training set.
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(4.62)

where t′ = t− 11

The ψH function was applied to detection of dissolves in the training set for performance

assessment. The area under the ROC curve was found to be 66.4% percent. This suggests that

while analysis of the σ-curve can be informative in dissolve detection, it is not in itself sufficient.

The chief difficulty is that ψH essentially measures the relative change in intensity variance, and

the variance of frame intensity values can change when a dissolve has not occurred. This is

particularly common in sports footage, where a camera pan ranges over an empty section of the

playing field, or sky (as in a tracking shot in golf). To characterise a σ-curve as a dissolve or not,

it would be preferable to exploit the quadratic characteristics predicted by the theory. Detecting
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Figure 4.24: Determining P (D|ψα(t) based on 169,000 training frames.

where a σ-curve exhibits quadratic change over some region could be expected to yield more

reliable dissolve detection. However, characterising this quadratic behaviour is challenging, as

the σ-curve can be affected by noise and, in the case of fast dissolves, is too short to be analysed

reliably.

4.4 Integrated Dissolve Detection

The auxiliary function for cuts must be mapped to a conditional probability P (D|ψα(t)). The

erf function is used for this mapping, as in section 4.1.4:

P (D|ψα(t)) =
1

2

(

1 + erf

(
ψα(t) − µe

σe

))

(4.63)

Again, the parameters for the erf function, µe and σe, are determined by examination of training

data. The values of ψ(t) were found for over 170742 frames of video, for which the ground truth

data was previously prepared. Estimates of P (D|ψα(t)) for various values of ψα(t) were deter-

mined from this data, shown by the blue stems in figure 4.24 (a). These values suggested µe = 0

and σe = 1 as appropriate initial parameters. As in the case of cuts, a Nelder-Mead minimisation

strategy with a weighted square error function was then used to refine the parameters. Also

as in the case of cut detection, the very uneven distribution of the weights made estimation of

the optimal parameters unstable. The minimisation procedure was performed 100 times, using

randomly perturbed initial parameters, and the best fit of all iterations accepted. The best fit

curve had parameters µe = 1.694, σe = 1.554; this curve is shown in green in figure 4.24 (a).
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The decision rule can then be applied, such that a dissolve is declared at locations t where

p(δ|B)

p(δ|B̄)

∣
∣
∣
∣
δ=δ22(t)

> ω
1 − P (D|ψα(t))

P (D|ψα(t))
(4.64)

A weight ω has been introduced to allow a weighting factor to be applied to the ψα function.

Table 4.3 shows the performance obtained in dissolve detection for different values of ω.

Performance was evaluated on the full corpus (including training material), and also on the

training material only. In both cases, the best performance (in the sense of highest mean value of

precision and recall) was obtained with ω = 24 = 16. The system obtains 85% precision and 59%

recall on the full corpus, for a mean performance of 72%. On the training corpus, performance is

considerably better; 89% precision and 81% recall are obtained, for a mean performance of 85%.

This suggests that the distributions of dissolve characteristics found in the training data are not

representative of those over the corpus as a whole. Examination of some of the dissolves included

tends to support this conclusion. For example, in the training set, a number of the dissolves

included are transitions where programme credits are faded in over a static background, a kind

of transition much less common in the non-training data.

The system published by Hanjalic in [135] achieved 80% in both recall and precision for

dissolve detection. It is noted that the test corpus used in that work contains only 23 dissolve

transitions, and the video corpus used is not available for comparative evaluation. As mentioned

previously, the video data and ground truth used here are the data set from the TrecVid 2002 shot

boundary detection task. The performance of the participants in this project is available [275],

and most systems evaluated obtain performance comparable to that reported here. The best of

these systems reported mean performance values around 75%.

4.5 Conclusions and Future Work

The ideas presented in this chapter offer refinements to cut detection, and a new approach to

dissolve transition analysis. For cuts, the use of an asymmetric window and a multiscale peak

detection have been proposed. These are shown to be beneficial to cut detection in very difficult

sequences.

The α-curve is an entirely novel approach to dissolve analysis. It is theoretically well-founded

and the results described here indicate that it has considerable use as a tool for dissolve detec-

tion. The computational cost of this measure is considerably higher than that of other metrics,

such as the variance of intensity values. This aspect may be ameliorated by careful selection of

the areas to compute α-curves over or computing α-curves over every second frame. As com-

puting performance continues to increase, the computational cost will become less important. It

must also be noted that dissolve detection via the α-curve relies on the reliable performance of

many components, including the frame similarity measure, peak finding procedure, peak width

estimation, and global motion estimation. The true potential of the α-curve approach can only
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Full corpus Training corpus

ω Precision Recall Mean(P,R) Precision Recall Mean(P,R)

2−10 0.638498 0.683417 0.660957 0.756598 0.895833 0.826216

2−9 0.64988 0.680905 0.665392 0.762611 0.892361 0.827486

2−8 0.664198 0.675879 0.670038 0.772727 0.885417 0.829072

2−7 0.670854 0.670854 0.670854 0.776074 0.878472 0.827273

2−6 0.685567 0.668342 0.676954 0.7875 0.875 0.83125

2−5 0.698413 0.663317 0.680865 0.791139 0.868056 0.829597

2−4 0.713115 0.655779 0.684447 0.796774 0.857639 0.827207

2−3 0.733711 0.650754 0.692232 0.80456 0.857639 0.8311

2−2 0.745665 0.648241 0.696953 0.811881 0.854167 0.833024

2−1 0.764179 0.643216 0.703698 0.822148 0.850694 0.836421

20 0.780186 0.633166 0.706676 0.84083 0.84375 0.84229

21 0.786834 0.630653 0.708744 0.84669 0.84375 0.84522

22 0.794872 0.623116 0.708994 0.854093 0.833333 0.843713

23 0.814815 0.60804 0.711428 0.867159 0.815972 0.841565

24 0.835664 0.600503 0.718083 0.889734 0.8125 0.851117

25 0.857143 0.572864 0.715004 0.910931 0.78125 0.846091

26 0.865079 0.547739 0.706409 0.915612 0.753472 0.834542

27 0.870293 0.522613 0.696453 0.915929 0.71875 0.81734

28 0.876712 0.482412 0.679562 0.914286 0.666667 0.790476

29 0.897959 0.442211 0.670085 0.921466 0.611111 0.766289

210 0.914634 0.376884 0.645759 0.925926 0.520833 0.72338

Table 4.3: Dissolve detection performance over the test and training video corpus for different

values of ω. The bold line indicates the value of ω achieving highest mean performance.

be assessed when all the requisite components are optimally implemented. This would require

a very considerable quantity of training material, and is outside the scope of this work. The ap-

proach adopted by Lienhart [203], in which an arbitrary quantity of training data is generated by

synthesising dissolves from a library of footage, would be necessary for a complete investigation.

An aspect of α-curve analysis not investigated here is how the spatial evolution of the local

motion map can inform transition detection. For example, in a wipe or pan transition, the error

map will be spatially coherent, while in a dissolve it would be expected to be more randomly

distributed. This is left for future work.



5
Snooker Events via Discontinuities1

The preceding chapters have described approaches to shot change detection. This is spatially

coarse discontinuity detection for video signals in general, and as such is domain agnostic. Such

domain-agnostic systems are limited to event detection at a semantically low level.

Higher level events are those that convey information about the meaning of the video. How-

ever, it is presently not feasible to design domain-agnostic systems for high-level event detection

in general. Consideration is restricted therefore restricted to some specific genre of video, such

that a priori domain specific knowledge can be exploited. This enables content-aware video pro-

cessing applications, in which video can be manipulated using high-level concepts such individual

characters, scene settings, or narrative events.

In this chapter, a number of techniques for high level event detection and summarisation of

broadcast snooker footage are discussed. These techniques form the essential components of a

domain-specific system, enabling analysis of snooker video as snooker video. The key to this

high level event detection is selection of the most salient regions of each frame—specifically, the

snooker table and pockets. Feature extraction is then applied to these regions. These features

are chosen so that discontinuities in the feature values correspond to events in the game.

Three new tools for analysing and summarising snooker footage are presented here, based

1The material in this chapter has been published as “Content-based analysis for video from snooker broadcasts”

by Hugh Denman, Niall Rea, and Anil Kokaram, in Journal of Computer Vision and Image Understanding -

Special Issue on Video Retrieval and Summarization, volume 92, issues 2-3 (November - December 2003), pages

141–306. The work was sponsored by Enterprise Ireland Project MUSE-DTV (Machine Understanding of Sports

Events for Digital Television)
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on identifying meaningful table views and ball movement events. The tools are a technique for

effectively summarising snooker shots in the game; a means for detection of ‘ball pot’ events;

and an approach to ball tracking suitable for event detection. Unlike previous work in sports

retrieval [289], the content analysis engine does not need to extract the 3D scene geometry to

parse the video effectively.

This chapter proceeds with a brief review of related work in semantic-level event detection

for sports footage. In the following section, some prerequisite techniques for snooker video

processing are presented, including localisation of the snooker table and the table geometry, and

locating and removing the player. The new tools are then described.

The scope of this work is limited to the development and initial assessment of the tools de-

scribed. Other researchers in this laboratory subsequently refined and integrated the techniques

into a complete system, showing how they generalise to other sports with strong geometry such

as tennis [241,259,260].

5.1 Related Work

The domain of sports video analysis has attracted considerable attention for a number of reasons.

Sports footage lends itself to machine analysis in ways that film and video in general (e.g. feature

films) do not. The action takes place in some well-delineated space with clearly marked features;

these features can be used to situate analysis in the domain of play. Within a given sport, the

variety of possible episode types is not large, and there are rigid constraints on how events can

follow each other in sequence. Ultimately, because sports are governed by rules, sports footage

is rule-bound to a far greater extent than other video material. These rules reduce the space of

admissible interpretations greatly, facilitating machine analysis.

A second factor is the significance of sports culturally and commercially. For major sports,

broadcast audiences are potentially global and are a major revenue source to broadcasters. From

this perspective, technologies that can enhance or streamline sports broadcasting are highly

desirable.

One of the first stages in sports video retrieval is distinguishing sports video from other kinds

of video; an example of this is the work by Kobla et al.which detects slow motion replays (which

are most commonly used in sports footage) in the compressed domain [175]. The next stage

is identification of which sport is present. Killeretal et al. [63] have described a method using

texture and colour-pair features to identify athletics, boxing, swimming, and tennis footage.

A number of systems targeting analysis of specific sports have been presented. Commonly

addressed sports include basketball [267, 332], tennis [169, 252, 289, 317], soccer [96, 122, 305,

328, 339], and baseball [64, 266, 274]. All of these systems exploit the constrained structure of

broadcast sports footage for parsing, event detection and summary generation. Snooker and

pool have not been addressed by other researchers.

Recently a number of researchers have become interested in exploiting the features common
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Figure 5.1: A typical full-table snooker shot

to all sports analysis, and have begun discussing sports analysis frameworks suitable for spe-

cialisation to a variety of related sports. Examples include the work of Zhong and Chang [352],

Duan et al. [91], and Kokaram et al. [183].

The potential of sports video analysis for analysing and improving athlete performance has

been recognised [196]. Many well-known sports coaches offer consulting services in which a

team sends in video of training sessions and the coach offers recommendations based on the

video; a number of commercially available systems aiming to offer this functionality through

computer assisted parsing and assessment of sports footage have become available in recent

years [74, 206, 217, 283, 284]. These are intended for use at the training ground as part of the

training regimen.

5.2 Preliminaries

In this section, some preprocessing techniques necessary to summary generation and event de-

tection are described. Firstly, the snooker footage must be parsed into individual camera shots2

Secondly, those shots containing a view of the entire snooker table, as shown in figure 5.1, are de-

tected. These shots are the most informative, and they are the focus of the techniques described

here. A novel means for extracting the table geometry, without the use of three-dimensional

perspective analysis, is then described.

Once the table is located, analysis is directed to the table surface; it is the motion of the

balls in this area that constitutes the snooker game. However, as the players walk around the

table, they will introduce uninformative motion in the table region. To suppress this, a means

for ‘player-masking’ is described: replacing the player regions that occlude the table with a

2Snooker video contains two kinds of ‘shot’ entity: camera shots and snooker shots.
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table-like texture, inhibiting detection of the motion of the player. Lastly, a heuristic method

for identifying the initial locations of the balls in the table is presented.

5.2.1 Shot-Change Detection

Shot cut detection is accomplished using the normalised bin-to-bin histogram difference method,

in the YUV colourspace. The normalised histogram of the Y component of frame F , H ′
YF

, is

computed according to

HYF
(i) =

∑

YF =i 1, i ∈ {0...255} (5.1)

H ′
YF

(i) =
HYF

(i)
∑

i HYF
(i) (5.2)

The U and V histograms are computed in an analogous fashion. The bin-to-bin histogram

difference between successive frames F , F + 1 is

∑

i

∣
∣
∣H ′

YF
(i) −H ′

YF+1
(i)
∣
∣
∣ (5.3)

for the Y component, and similarly found for the U and V components. If any two bin-to-bin

differences exceed 0.5, a shot change is deemed to have occurred.

Compared to the shot change systems described in the previous two chapters, this is a

relatively straightforward approach. It is found to work effectively in detection of the simple

transitions typical of broadcast snooker footage.

5.2.2 Snooker Table Detection

Once the shot boundaries have been found, the first frame of each shot is analysed to determine

whether it contains full-table footage. The frame is converted from the YUV colourspace into

RGB, made up of red (R), green (G), and blue (B) components, and a mask corresponding

to the green area of the frame is generated. The mask is a binary image M generated by the

conjunction of the two binary images

M(x) =

{

1 if (G(x) −R(x)) > τ ∧ (G(x) −B(x)) > τ

0 otherwise
(5.4)

For component values in the range [0..255], a threshold of τ = 25 is used. This threshold was

found empirically and has proved suitable for footage captured from a variety of sources. The

table mask is then convolved with a Gaussian blurring kernel, to remove interlacing and noise

artifacts. An example of a mask generated by this method is shown in figure 5.2 (a).

The edges in the table mask are found using Sobel edge detection, as shown in figure 5.2

(b). It is then necessary to determine the dominant straight lines in this edge map, to find the

table boundaries. These lines are detected using the linear Hough (Radon) transform. Briefly,

the Hough transform maps each point in the edge map to a set of accumulators corresponding
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to all the lines in the parameter space which pass through that point. For each nonzero point

in the edge map, all the corresponding accumulators are incremented. Peaks in the parameter

space then correspond to lines in the image. The parameter space ranges over ρ, the distance of

the line from the origin, and θ, the angle the line makes with the x-axis; the equation of a line

in this formulation is y sin(θ) + x cos(θ) = ρ.

For the purpose of table detection, θ is restricted to the the regions of parameter space

where the table edges are likely to be found. These are angles in the ranges [3..25], [89..90],

and [155..177]. Restricting θ in this way increases computation speed considerably. Lines in the

configuration corresponding to a snooker table create a characteristic pattern in the transform

space: one peak in the range θ ∈ [3..25], one in the range θ ∈ [155..177], and two in the range

θ ∈ [89..90]. If peaks in this configuration are found, the shot is selected as a full-table footage

shot. The Hough transform of a table edge map is shown in figure 5.2 (c). The four peaks in

the transform space are clearly visible. The four lines corresponding to these peaks are shown

superimposed on the table in figure 5.2 (d).

Figure 5.3 shows how this method deals with a variety of snooker video frames. Figures 5.3

(a)-(d) show the frames being processed; figures 5.3 (e)-(h) show the green edges of each frame,

and figures 5.3 (i)-(l) show the Hough transforms of the green edges of each frame. The char-

acteristic pattern corresponding to a snooker table is detected in figures 5.3 (i) and (l), and not

in figures 5.3 (j) or (k).

The implementation described here uses a threshold on the Hough transform image in the

regions expected to contain peaks to determine if the pattern characteristic of a snooker table

is present. This is found to be effective against a number of footage clips.

Many sports such as tennis, snooker, badminton, and cricket, occur within predefined playing

limits. Most of the video footage from these events contains well delineated field lines in those

views which contain the most information about the play - for example, the court lines in tennis,

and the edge of the table in snooker. Because of this, the Hough transform is a powerful tool for

characterising shots of interest in sports footage, as it encapsulates the geometry of the camera

view. In fact, Hough transform features can be used to characterise the camera view of every

frame in sports footage, and thus applied to shot change detection as well as view detection.

This immediately exploits the context of such sports video and is a more powerful approach

than the generic use of histogram based shot cut detection. The importance of each shot for

summary purposes can be assessed based on the geometry of the view. For instance, in both

tennis and snooker, shots of the crowd and of the players can be considered less important than

shots containing game events, and summarised simplistically, or discarded entirely. These ideas

are developed in a system described in [259], building on the work described here. Here Hidden

Markov Models are used to analyse the evolution of the second order moment of the linear Hough

transform of each frame. It is shown that unified shot change detection and view identification

can be effectively achieved by these means.
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(a) M(x), the green region of the frame. (b) Sobel edge detection.
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(c) The restricted-domain linear Hough transform. (d) Lines found in (c) overlaid on the original image.

Figure 5.2: Steps in the table finding algorithm. The disposition of the four peaks in (c) is

characteristic of lines corresponding to a snooker table.

5.2.3 Table Geometry

Having determined that a given shot contains full-table footage, the next stage is to find the

frame-relative table geometry—i.e. the locations in the video frame corresponding to the ball

spots and the pockets. This relies on knowledge of the real-world dimensions of a championship

snooker table, as shown in figure 5.4. Various approaches to this problem are possible. As

the table is distorted by a perspective projection resulting from the camera angle in full-table

footage, attempting the inverse perspective transform is an obvious candidate. However, this

is not practical: the inverse perspective transform is an ill-posed computation, especially when

only one view is available.

Here a new method is proposed relying only on detection of the table. First, the corner
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Figure 5.3: Examples of table finding. The top row shows original frames from the snooker

footage. The middle row presents the edges found in the green mask. In the bottom row, the

Hough transforms of these edge maps are shown. The characteristic four-peak pattern is present

only in those frames containing the full-table view.

pockets are located; these are at the points of intersection of the edges of the table. The use of

the Hough transform space to find the edges gives direct access to the parameters ρ and θ for

each edge. The point of intersection (x, y) for any two lines (θ1, ρ1), (θ2, ρ2) can be found using
[

x

y

]

=

[

cos(θ1) sin(θ1)

cos(θ2) sin(θ2)

]−1 [

ρ1

ρ2

]

(5.5)

It remains to find the other points of interest on the table. A key point here is that the

perspective distortion typical to full-table snooker shots consists of foreshortening along the

vertical axis. Relative distances along the horizontal are not affected. The perspective distortion

is dealt with in this work by exploiting a perspective-invariant geometric property. The invariant

used is that the diagonals of a trapezoid intersect at the midpoint of the trapezoid, irrespective

of perspective transformation. This is a novel approach to geometry localisation.
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Figure 5.4: Championship snooker table dimensions

The invariant can be used to find the real-world midpoint of any trapezoid in frame-space—

such as the table. Furthermore, the table can be repeatedly subdivided vertically to find any

vertical position. For example, the black spot is 320 mm up from the bottom edge of the table,

whose total length is 3500mm. 320/3500 expressed in binary is approximately 0.0001011101,

so 320 = 3500 ∗ (2−4 + 2−6 + 2−7 + 2−8 + 2−10). Each of these negative powers of two can be

found by division along the vertical dimension of the table. In practice, the position of the black

ball is adequately approximated with 0.00011, or 3/32 along the vertical. Repeated subdivision

along the vertical yields the positions 1/8 and 1/16 of the way up; subdivision between these

two points yields the black spot approximation, 3/32 of the way up.

As perspective projection does not affect horizontal proportion, the table dimensions can be

used directly to find horizontal positions. For example, the black, pink, blue, and green balls all

lie exactly half-way between the vertical table edges, despite being at varying depths.

An example of a successfully extracted table geometry is shown in figure 5.5. While the spot

positions are not exact, they are quite close enough for the purpose.

5.2.4 Player Masking

Event detection in snooker footage is essentially concerned with the movements of the balls.

In general, motion of the balls can be detected simply by performing motion detection on the

table region of the video. However, where the player is obscuring some portion of the table, it is

difficult to distinguish ball motion from player motion. For this reason, a technique is developed

here whereby the region of the table obscured by the player can be identified and filled-in with

a synthesised table-like texture. This simplifies the initial detection of the balls, and suppresses
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Figure 5.5: Table geometery extraction.

any motion due to the player.

In snooker, the players’ clothing typically uses colours darker or brighter than the table,

such as black and white. Similarly, the snooker cue is composed exclusively of dark and bright

regions. The table is found to have a moderately high brightness. Thus extreme intensity values

are more likely to correspond to the player than the table. Regions with extreme intensity values

that are connected to the edge of the table are made part of the player mask:

P (x) =

{

1 if (M(x) = 1) ∧ (I(x) < τ1 ∨ I(x) > τ2)

0 otherwise
(5.6)

where I(x) is the intensity component of pixel x. τ1 is set to 100 and τ2 set to 180; these values

have been found effective for footage captured from a a variety of sources. Any region in this

map touching the edge of the table is considered to be the player, and filled with a table-like

texture. Some examples of successful player masking are shown in figures 5.6.

Some areas of the table have very low intensity, including the pockets and the shadow under

the lip of the topmost table edge. This shadow can cause problems when the player is leaning

over it and there are balls near the top of the table. In this circumstance, the balls will be part

of a region have extreme intensity, connected to the edge of the table by the shadow and the

player, and thus will be add to the mask. Such a situation is shown in figure 5.6 (c); both the

white ball and the targeted red would be lost if the mask were made on the basis of extreme

intensity values alone.

To address this, balls near the edge under the upper lip are detected and removed from the
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player mask. First, the shadow at the top of the table is found; all dark regions close to the

top of the table are considered part of this shadow. Secondly, this shadow region is segmented

into table and non-table regions, on the basis of hue values. The most commonly occurring hue

values in the frame will be those of the table. To find the range of hue values that correspond

to the table, H1 . . . H2, the 255-bin normalised histogram of hue in the frame is computed. The

largest peak in this histogram will correspond to the table; starting at this peak, the range of

hue values is expanded until 75% of the pixels is accounted for. This expansion is done according

to a greedy algorithm: the range is expanded, either to the left or the right, so as to incorporate

the larger of the two adjacent bins. The resulting peak bounds are H1 and H2, the upper and

lower limits of the table hue range. Regions in the shadow mask having a hue outside this range

are considered balls, and removed from the player mask.

The area corresponding to the player mask is filled with a green texture similar to the table.

The fill-in texture is generated by finding a region of the table with no high frequency compo-

nents. To find this region, the table region is filtered using a differential filter [−1, 0, 1]T .[−1, 0, 1],

and a square region 20 pixels on a side is found where the difference values are all less than 15.

It is assumed that this region contains only empty table and is free of balls or holes. Each point

in the player mask is filled in by randomly sampling the pixel values in this region.

5.2.5 Initial localisation

Once the table and player regions have been identified, the next step is the identification and

localisation of the individual balls. This is achieved using analysis of the first frame of each

shot. The first step is a first-approximation segmentation using the watershed algorithm. An

example of a such a segmentation is shown in figure 5.7 (a).

Next, objects that are too small (containing fewer than twenty pixels) or too large (containing

more than 100 pixels) are discarded. Objects that are long and thin are also discarded, i.e. where

the ratio of the long side of the object bounding box to the short side is greater than three. The

frame after these tests is shown in figure 5.7 (b). The binary objects found are then classified

based on their relative colour properties.

First, the three brightest balls are found. These are the pink, yellow, and white balls. Of

these balls, the yellow ball has the highest saturation. Generally, the pink ball will have a higher

hue than the white, so these two can be distinguished on that basis.

The black ball is the ball with the lowest median brightness. The green and the blue balls

will have the highest hue values, with the blue having the higher hue value in most cases. The

remaining balls are the brown and the red balls. While the brown ball has a slightly lower hue

value, it is difficult to reliably distinguish these on the basis of their colour properties.

Leaving the brown / red distinction aside, this simple initialisation scheme is found to work

well in a variety of footage; two examples of successful ball finding are shown in figures 5.7 (c)

and (d). Not considered here are the further cues for object localisation which would become
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(a)

(b)

(c)

Figure 5.6: Three examples of player masking.

available if the analysis techniques described here were integrated into a single system. For

example, at the start of play the balls are located at their ‘spot’ positions. Where player

masking is successful, the white ball will usually be a bright object close to the player mask; this

could be used to assist in pink / white disambiguation. Ball tracking, described below, can be

used to update an estimate of ball position from one shot to the next. Finally, the game state

can also provide cues. For example, if the player should be shooting at a red, then the ball the

white first collides with is probably not the brown. Some of these higher level aspects have been

developed in [259].
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Figure 5.7: Two successful examples of ball finding. The watershed segmentation is shown on

the left, and the ball labels are shown on the right. Note that the red and brown balls are not

distinguished.

5.3 Semantic Applications

5.3.1 Clip Summaries

A clip of snooker footage generally shows a single snooker shot: an event starting with the

contact of the cue with the white ball, and lasting until no balls are moving. In this section, a

means for summarising clips showing a snooker shot in a single frame is presented. This is a

novel application of the the Motion History Image (MHI) [32,33], originally proposed by Bobick
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and Davis for gesture recognition. The MHI of frame t is defined by

MHI(x, t) =







M if |I(x, t) − I(x, t− 1)| > τm

max(0,MHI(x, t− 1) − 1) otherwise
(5.7)

where I(x, t) is the intensity value of pixel site x at time t, τm is a motion detection threshold,

and M is a large constant. High values of the MHI correspond to recent motion. The value M is

chosen to determine how long the effects of motion persist. A sample MHI is shown in figure 5.8

(a). Shot summaries can then be generated by averaging the first and last frames of the shot,

as shown in figure 5.8 (b) and overlaying the MHI on this composite. In order that the the

summary trace should not obscure the positions of the balls in the ghosted composite, regions

of the MHI corresponding to very early or very recent motion are suppressed. This ensures that

the original and final positions of the balls are visible in the final summary image. An example

result is shown in figure 5.8 (c). The value of M is chosen to be equal to the length of the clip

being summarised.

The motion of the player can introduce significant ‘motion clutter’ in the MHI–i.e. unde-

sired motion regions which obscure the motion of the balls. An example of this is shown in

figure 5.8 (d). Applying the player masking algorithm described above reduces this motion

clutter considerably, as shown in figure 5.8 (e).

An entire video shot, as defined by the result of shot change detection, often includes footage

before the snooker shot begins. This footage typically consists of the player walking around the

table, considering angles and ball positions, and it is not desired to include this footage in the

clip summary. Using player masking enables the isolation of the footage containing the actual

snooker shot. Summary generation is not initiated until motion is detected in the table region—

which, when player masking is in use, will be due to the commencement of ball motion. When

detecting the start of ball motion, motion regions containing fewer than 5 pixels are assumed

to be due to noise. Summary generation begins only when a motion region in the table area

contains more than five pixels. Similarly, summary generation is terminated at the end of the

shot, or when no significant motion is detected in the table region.

The techniques described above for refinement of the summary image can only be applied

where the footage contains the full table view considered for table detection and player masking.

However, the MHI can still be used to generate effective summaries of clips containing other

camera views in snooker footage. Figure 5.9 shows an MHI-based summary of 2421 frames of a

snooker game. In the bottom-left image, camera motion (here zoom) has introduced motion

clutter. This problem could be alleviated by using global motion estimation and compensation.

Summary images 4 and 9 illustrate the result of event detection; ball pot events have been

automatically highlighted with a red circle is overlaid on the target hole. In image 4, the motion

track of the white ball is overlaid on the MHI summary image. These two aspects of the summary

generation system are described next.
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(a) MHI image (b) Composite of first and last

frames

(c) Summary image: MHI overlaid

on composite

(d) Summary image generated without player masking (e) Summary image generated with player masking

Figure 5.8: Use of the MHI and player masking to generate summary images for snooker shots.

5.3.2 Pot Detection

The most important events in snooker are ball-pot events, and in this section a method to detect

these events is described. The method exploits the extracted in-frame geometry to define regions

of interest around each of the pockets of the snooker table. These regions can be monitored to

detect object disappearances. When the player masking described earlier is in use, the only

moving objects on the table are the snooker balls. When an object disappears in the vicinity of

a pocket, it can safely be inferred that a ‘ball-pot’ event has occurred.

Two regions around each pocket are monitored, for a total of twelve regions in total. At

each pocket, a small, inner region and a larger region encompassing the smaller are defined. The

regions must be large enough that fast moving balls cannot traverse them in less than 1 frame

time while in motion. The sizes used are 1/15 of the table width on a side for the small regions,

and 1/8 of the table width on a side for the large regions. Figure 5.10 shows the locations and

sizes of these regions on a snooker table.

Having defined the regions, the next stage is to detect when objects enter and leave these
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Figure 5.9: MHI summary of 2421 frames of broadcast snooker footage.

regions. This is achieved using detection of non-table pixels within in region. Let T1 be the frame

time at the start of the first shot containing a full-table view. Then I(x, T1) is the intensity

image at the start of the shot. It is assumed that no balls are in any of the regions at this time.

The detection of non-table pixels within each region at frame t, MR(t), is defined by

MR(t) = |{(x ∈ R) ∧ (|I(x, t) − I(x, T1)| > τm)}| (5.8)

where R ∈ (1 . . . 12) is the region under consideration. The difference threshold τm is set to

30 intensity levels. As pixels corresponding to the player are replaced with table-like values

via player masking, changes in MR(t) are assumed to be generated by ball motion. Peaks are

generated in the traces by balls entering and leaving the regions.

The start and end points of peaks in the MR(t) correspond to balls entering and leaving the

region. Comparing the ball entry and exit times between the large and small regions for each

hole can be used to detect pots and near misses. As a ball approaches a hole, it will enter the
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Figure 5.10: Regions monitored for ball potting detection.

large region first, and then subsequently enter the small region. If the ball is potted, it will be

detected leaving both regions simultaneously. If it leaves the small region first, and then the

large, it has bounced back from the cushion and has not been potted. If it enters the small

area but does not leave, it has stopped moving in close proximity to the hole. These latter two

scenarios are ‘near miss’ events, of interest in themselves in summary generation.

To detect the event scenarios described above, thresholding is applied to the traces for each

region. At least 20 pixels within the region must be ‘non-table’ for the motion to be considered

significant. Values greater than 80 in the trace indicate that nearly all the pixels are non-table,

suggesting that the object in the region is too large to be a ball. Such large values are usually

caused by a failure in the player masking algorithm, and so these values are excluded. The

thresholded signal is then

M̂ ′
R(t) =

{

1 if 20 < MR(t) < 80

0 otherwise
(5.9)

This signal is then filtered with a three-tap median filter, to remove the effects of noise.

M̂R(t) = median({M ′
R(t− 1),M ′

R(t),MR(t+ 1)}) (5.10)

Figure 5.11 shows how the traces for each region evolve for a pot and a near miss. In the

images on the left, the blue ball is potted into the left center pocket. The purple traces in the

graphs on the left show the non-table pixel count for the large and small regions around this

pocket. The ball enters the large region at frame 20, and the small region at frame 25. It leaves

both regions simultaneously, at frame 33. These events are reflected in the start and end points

of the purple peaks, and thus the pot is detected.
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The images on the right of figure 5.11 illustrate detection of a near miss, in which a red is

almost potted to the bottom left pocket. The ball enters the large area in frame 17 and the

small area in frame 18. It leaves the small area in frame 25, and then the large area in frame 27.

A near miss is flagged. Both traces return to zero briefly at frame 22. This is due to a failure

in the player masking algorithm, and is dealt with by median filtering.

The event detection algorithm was applied to a 16-minute game of snooker, consisting of

24250 frames and including 14 pots. All pots were selected correctly, along with 5 false alarms,

for 100% recall and 74% precision. The false alarms were caused by failures in the player masking

algorithm. The same footage contained four near misses, of which three were found, with no

false alarms: thus 75% recall and 100% precision for near miss detection. The missed ‘near miss’

event was again due to a malfunction of the player masking algorithm.

5.3.3 Explicit motion extraction

MHI summary images convey motion information implicitly, in a form suitable for a viewer.

This representation is not suited to machine analysis of ball motion, as it does not explicitly

describe information regarding how many balls are moving; which balls are moving; whether

balls have collided; and the position of the balls at each moment in time. Information at this

level can only be extracted using explicit tracking to establish the trajectories of balls in motion.

Object tracking is achieved here using a colour-based particle filter. It is noted that a

similar tracking system has been presented by Nummiaro et al. [242]; the system described here

was developed independently [81]. The underlying algorithm is called condensation [159] (for

conditional density propagation), and can be thought of as a non-parametric Kalman filter. In

outline, the algorithm operates as follows. Let p(xt) be the time-varying distribution of interest

(here the position of the ball at time t), and zt be observations at time t (here colour values at

particular pixels). By Bayes’ law

p(xt+1|zt+1) ∝ p(zt+1|xt+1)p(xt+1|zt) (5.11)

Here p(zt+1|xt+1) is the likelihood of observing zt+1 at time t given that the ball is at position

xt+1. The prior distribution, p(xt+1|zt), is generated according to

p(xt+1|zt) =

∫

p(xt+1|xt)p(xt|zt) (5.12)

The distribution p(xt|zt) is represented by N samples sit, i ∈ 1 . . . N . Each sample has an

associated weight πi, corresponding to the likelihood at that location P (z|xt) = sit). At each

iteration, the samples are updated according to a linear model

sit+1 = sit + (x̄t − x̄t−1) + ε, where ε ∼ N (0, σ) (5.13)

where x̄t is the weighted mean of the samples at time t, and σ introduces a random scattering

of the particles.
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(a) MHI summary image of shot
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(b) MR(t) for large regions
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(c) MR(t) for small regions

Figure 5.11: Event detection via region monitoring. The images on the left show a pot. Those

on the right show a near miss.
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At each stage the distribution of colour values corresponding to the ball is represented by a

Gaussian distribution for each of the H, S, and V channels. Where H̄t, σ
2
Ht

are the mean and

variance of the distribution of hue values of the ball, and h, s, v are the values observed in z, the

likelihood is

P (zt|xt) =
1

3

(

H̄t − h

σ2
Ht

+
S̄t − s

σ2
St

+
V̄t − v

σ2
Vt

)

(5.14)

These distributions are updated at each iteration based on the sample set:

H̄t+1 =
1

∑

i π
2

∑

i

H(sit)π
i (5.15)

σHt+1 =
1

(N − 1) 1
N

∑

i π
2

∑

i

πi(H̄t+1 −H(sit))
2 (5.16)

(5.17)

The tracking algorithm will sometimes fail to locate the ball in a particular frame. This is

the problem of ‘loss of lock’. Failure to locate the ball can be diagnosed by examining the sum of

the particle likelihoods; if the sum is less than a threshold, the new position of the ball has not

been located. In this case, the scatter parameter σ can be increased according to some schedule,

and the particles redistributed in a widening pattern until the ball is found. If the ball is not

found after several iterations of this widening procedure, it is assumed not to be on the table,

and thus potted. This assumption is reinforced if the last known location of the ball is near a

pocket.

Equation 5.13 represents a semi-deterministic update of the ball position, assuming that the

ball motion is essentially constant. Incorporating this update greatly speeds acquisition of the

ball from frame to frame. A more complicated motion model that detects when the ball is about

to hit the table edge could be used, to automatically incorporate bounces as a reflection in the

horizontal or vertical velocity. The linear model described was found to deal with bounces in all

the test footage, so the more sophisticated model was not deployed.

Two examples of successful ball tracking using this method are shown in figure 5.12. Video

examples of this tracking algorithm are presented in the accompanying DVD.

Figure 5.13 illustrates a preliminary approach to extracting semantic information from the

results of object tracking. The bounces of the white ball can clearly be seen in the position

and speed graphs, and the position of the ball at the time of each bounce is known. All three

bounces are at a table edge, so it is likely that in this track, the white ball has not hit any other

ball. The speed of the white ball decreases to zero in the clip, so it can be assumed that this

video clip represents the complete snooker shot. Thus, there is a higher than normal probability

that this shot is a foul (as it is a foul in snooker not to strike a coloured ball with each shot).
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(a) White ball track superimposed on snooker frame. (b) Yellow ball track superimposed on snooker frame.

Figure 5.12: Ball tracking via condensation

5.4 Conclusion

The work described in this chapter offers powerful tools for summarising sports footage, and a

basis for machine understanding of snooker video. It is useful to note that manually generated

summaries of sports in general simply do not exist in this form. Sports summaries are typically

shortened video footage, and textual annotation can take 10 hours for 1 hour of summary

generation [63]. The computational load of the tools presented here is not high. Furthermore, as

the techniques are designed for batch use, running entirely unattended, performance optimised

implementation of these tools has not been necessary; many of the tools are implemented in

Matlab. Aside from player masking, the tools, run in cascade on a single 1 GHZ PIII, take about

3 hours to summarise 16 minutes of footage. Player masking introduces significant computational

load; this can take up to 7 seconds per frame, principally because of its use of morphological

operations such as dilation.

Three new ideas for sports summarisation have been presented here. The most important of

these is that 3D information is not necessary to summarise footage according to geometry. Using

in-image analysis, Hough transform analysis, and a-priori knowledge about diagonal intersections

allows a great deal of content-rich information to be extracted from the footage. The results

presented show successful detection of table view shots and ball-potting events, and tracking

of ball trajectories. The use of the MHI is a novel concept in the generation of content rich

summary key frames. Further research undertaken subsequent to that described here has shown

that the use of the Hough transform to characterise frame geometry, and the use of the MHI to

generate summary images, are particularly applicable to a wide range of court sport events.
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(a) Snooker frame with white ball track superimposed.
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(b) X and Y components of white ball position. Bounce

locations are indicated by red circles.
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(c) X and Y components of white ball velocity.

Figure 5.13: An example of a foul, in which the white ball does not strike a colour. The two

graphs are of white ball position and speed. Observe that bounces are clearly visible in the

graphs.

6
Low-level Edit Point Identification 1

In this chapter ways to exploit low level video characteristics for the detection of edit points are

considered—in particular, edit points in dance video suitable for synchronisation with a beat

event in a stream of music. The term ‘low-level’ is employed here as a characteristic of algorithms

that operate with no concept of an object. In the methods presented here, no attempt is made

to explicitly segment the video stream into its constituent objects. Video object segmentation is

considered in the next chapter. In this chapter, implicit characteristation of the motion content

of the scene is sought, in the interest of robustness and more general applicability. Several of the

techniques presented rely only on motion detection, which is a particularly low level of image

sequence analysis, but has the advantage that it can be robustly applied in many more situations

than more high level processes.

Edit points in a video stream arise predominantly as a result of the motion content of the

video. Therefore the techniques described in this chapter rely on low-level characterisation of

the motion in each frame of the video under consideration. However, meaningful edit points

are always generated by the motion of a specific object. The approaches described below will

thus be most successful in footage where the motion content over the entire spatial extent is

representative of the motion of an object—for example, when only one object is depicted in the

video. For example, consider pieces of footage which portray a dancer performing in front of a

relatively homogeneous background; motion detection applied to such streams can reveal points

1An early version of this work was described in “Dancing to a Different Tune” by Hugh Denman and Anil

Kokaram, in Proceedings of the IEE European Conference on Visual Media Production (CVMP’05), pages 147–153,

London, November 2005

120



6.1. Instances of Percussive Motion 121

where the dancer stops or starts suddenly. These edit points are instances of percussive motion,

a term introduced here to describe movements in dance that are analogous to beats in music.

The first section of this chapter presents some examples of such target edit points, along

with a short discussion outlining the difficulty of automatically assessing edit point detection.

This is followed by a description of a method for locating edit points based on motion detection.

Within this section, techniques for parsing a signal, or trace, into peaks, and classifying these

peaks as desired (corresponding to an edit point) or undesired, are developed. There then follow

several sections describing other low-level signals for edit point detection. These analysis of

the DFD bounding box (introduced in chapter 2), local motion vector analysis, motion blur

detection, and audio energy analysis. The same approach for parsing a signal into peaks and

then classifying the peaks is applied to each of the resulting low-level traces. A framework for

probabilistic fusion of these signals is then described. The chapter concludes with an assessment

of the techniques presented.

6.1 Instances of Percussive Motion

In order to consider resynchronising footage of a dance performance to a new music track, it is

first necessary to describe what aspects of a dance video give rise to the percept of synchronisa-

tion in the original footage. For many conventional forms of dance, the movement of the dancer

can be viewed as consisting of a succession of phrases. These phrases are presented in succession,

in time to the accompanying music; in particular, dance phrases generate a compelling aesthetic

effect when they start and end simultaneously with beats in the music.

The key enabling assumption for this work is that there are some intrinsic characteristics

particular to the movement between phrases. The term percussive movement is introduced

as characterising this kind of motion. This term is chosen to reflect the supposition that the

function of these particular motions is to imply or reinforce the perception of rhythm, similar

to the role played by percussion instruments. Typical examples include a sudden change of

direction of a limb, or the stamping of a foot. Among the most salient percussive motion events

are those in which the motion of the dancer suddenly stops or starts. The focus of this chapter

is therefore on the identification of these local motion discontinuities.

6.1.1 Difficulties in Edit Point Localisation

The chief difficulty in assessing tools for edit point detection lies in the lack of a well-specified

ground-truth for a given sequence. A number of factors making establishing a ground truth a

difficult problem are now described. Each factor is illustrated by video material on the accom-

panying DVD.

Firstly, edit point selection is essentially a subjective judgment. While the larger gestures of

a dance can be clearly demarcated, many more subtle movements could be considered either as
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dance phrases in their own right, or as constituent parts of a larger gesture.

Secondly, few dancers have sufficiently precise motor control for a stop or phrase transition

to be localised to one frame of video (typically a forty millisecond interval). For example, the

dancer’s foot may land three or four frames before her hand comes to rest. In such cases, there

is some ambiguity as to which frame represents the end of the movement; while the movement is

clearly at an end when both limbs have stopped, the perception of the stop is more likely to be

associated with the foot motion. This problem is exacerbated when several dancers are dancing

to the same music, as the lack of frame-level precision is more marked with multiple dancers.

Figure 6.1 illustrates an example of this phenomenon.

A related issue is that a dancer may decelerate the motion of a limb rapidly to coincide with

a musical beat, but allow the limb to continue moving at a lower rate until it comes to rest a

short time later. While the strong deceleration is the movement correlated with beat, it may

not be the most appropriate choice of edit point, as it is not the end of the dance phrase.

A technical difficulty with edit point identification is that while the sudden stopping of a

limb might be clearly visible to a human observer, the ‘low level stop’ visible in the sequence

in terms of scene motion content may not occur until several frames later due to the motion of

the dancer’s clothing or hair. The distinction between a dancer’s limb and her clothing is an

example of semantic content in a sequence and, as previously discussed, this is a level of signal

interpretation not readily available to signal processing techniques.

Finally, not all dance movements are demarcated by motion stops. A commonly occurring

example is that of a dancer executing a series of spins. Here, each spin can be considered an

independent phrase, but the choice of where one spin starts and another ends is somewhat

arbitrary, and need not correspond to signal-level ‘stops’ at all.

6.1.2 Assessment of Edit Point Detection

To facilitate assessment of the techniques presented here, ground truth data was prepared for

several sequences. The set of ground truth frames is designated G. In the presentation of

detection performance below, it should be borne in mind that different assessors would have

marked the sequences differently—in particular, some frames detected by these techniques are

defensible as edit points despite their not appearing in the prepared ground truth.

The performance of edit point identification algorithms is assessed with reference to a ground

truth prepared by hand for several sequences. It has been outlined above why establishing a

precise ground truth for a sequence is a difficult undertaking. A further difficulty in assessing

edit point detection performance is that the ‘cost’ of a missed, spurious, or inaccurately localised

edit point will vary with the application for which the edit points are destined. In the main

application under consideration in this thesis, dance footage is to be resynchronised such that

edit points are aligned with a new beat sequence (described in chapter 8. Here spurious edit

points are often less offensive than missed edit points, and the impact of inaccuracies in edit
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Figure 6.1: Sudden stops are not always localised to within one frame; here, the dancer’s foot

stops first, followed by her hand (indicated by red circles); her dress continues to move for some

frames after.
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point localisation depends greatly on the edit point in question. The numerical results presented

in this chapter should therefore be considered as roughly indicative of the relative performance

of different approaches, rather than as an objective measure of the absolute quality of the result.

At the end of the chapter, and in the accompanying videos, detected edit points are visually

presented, and this gives a more accurate indication of detection performance.

An edit point detection procedure results in a set ep of estimated edit points, which is

compared to some ground truth for the sequence, designated G. An estimated edit point is

considered a match if it lies within 5 frames of an edit point in the ground truth data. For edit

point detection schemes described in this chapter, performance in detection is described in terms

of the number of hits, number of false alarms, and number of missed edit points. These three

measures are denoted by #H, #FA, and #M, respectively. The recall and precision, denoted by

R and P , are also presented.

The set of matched edit points, êp, can be assessed in its own right by the distribution of

distances between matched pairs êp(g)−G(g′), where G(g′) is the ground truth edit point closest

to êp(g). The distribution is assessed by

MDmedian = median
g

{
êp(g) = G(g′))

}
(6.1)

MDmean = meang
{
êp(g) = G(g′)

}
(6.2)

MDvar = varg
{
êp(g) = G(g′)

}
(6.3)

For all these measures, lower magnitude represents better performance, in the sense of a closer

correspondence between estimated edit points and the corresponding ground truth edit points.

In the first sections of this chapter, the results described are for the three training sequences

described in appendix B. This numerical assessment of edit point detection is used primarily to

determine the optimal parameters for the different techniques. The final section of the chapter,

and the accompanying DVD, present results on other sequences to illustrate how the techniques

described here generalise to other material.

6.2 Edit Point Identification using Amount of Local Motion

One of the simplest ways to characterise the motion content of a video sequence is to consider

only the amount of motion in each frame. In this section, a method for edit point identification

is presented which relies on analysis of the motion trace. This is a signal representing the

amount of local motion at each frame of a sequence. Sudden decreases in the motion trace are

found where the amount of local motion in the sequence decreases suddenly; these locations

often correspond to a particular kind of edit point termed a sudden stop. In outline, then, the

approach proceeds by computing the motion trace of a sequence, dividing it into a series of

peaks, and considering the minima between peaks as candidate edit points. Not all edit points

in a sequence will correspond to minima in the motion trace, nor will all minima correspond to

edit points—but the approach generates aesthetically pleasing results nevertheless.
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6.2.1 Computing the Motion Trace

The first stage in computing the motion trace is to quantify the amount of local motion between

a pair of frames. This is approximated by the Displaced Frame Difference (DFD) after global

motion compensation, using the refinement method described in chapter 2. This DFD is then

thresholded with a a value of 15, generating the Local Motion Map (LMM): a map such that

LMM (x) = 1 wherever local motion has been detected. Small blotches in the LMM arising due

to noise or defects in the video are suppressed by discarding any connected regions in the LMM

containing fewer than 20 pixels. The motion trace is then defined by

motion(n) =
∑

x

(LMM n(x)) (6.4)

Using the DFD values themselves to quantify the amount of local motion was found to be

less effective than the binary-valued LMM. This is because the DFD values are sensitive to

variations in the contrast between background and foreground regions.

6.2.2 Minima in the Motion Trace

As described above, it is expected that edit points in the sequence should correspond to local

minima in the motion trace. Figure 6.2 shows this effect for an number of frames from the

greenDancer sequence. In this section, the approach to minima detection used is described. The

motion trace will be referred to as M(n) for clarity in this section and the next.

Minima are detected using the sign of the first derivative of the motion trace. The first

derivative is designated d(n) = M(n) −M(n − 1), and the sign of d(n) is denoted by s(n) =

sgn(d(n)). Minima in the motion trace are identified wherever the s(n) changes from -1 to 0 or

1. The set of minima resulting is denoted M.

Only significant minima in the motion trace will correspond to edit points; minima arising

due to noise or small changes in the signal value will not. Three filtering components for

suppressing detection of such spurious minima are now described.

6.2.2.1 Savitzky-Golay filtering

The motion trace is typically a very noisy signal, and spurious local minima arising due to noise

are common. Dealing with this noise is the first consideration. The first stage of processing is

therefore the application of Savitzky-Golay filtering [258,268].

In this smoothing method, a smoothed value, M̂(n), is obtained by fitting a polynomial to

a window of values about M(n). For this work, a polynomial order of 3 and a window size of

7 points are used. Consider that fitting a polynomial of order 3 to {(m,M(m)) : |m− n| ≤ 3|}
results in coefficients α, β, γ, δ. The smoothed value is then given by M̂(n) = αn3+βn2+γn+δ.

This smoothing method is chosen as peaks and troughs in the smoothed signal are comparatively

well preserved, whereas these features can be attenuated if simpler low-pass filtering is employed.
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Figure 6.2: A motion trace and the corresponding frames from a sequence depicting a dancer.

Sudden stop locations are identified by vertical lines traversing the motion trace, and by a black

border surrounding the corresponding video frames. It can be seen that minima in the motion

trace correspond to locations which constitute a parsing of the phrases in the dance.
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One drawback of polynomial filtering methods such as the Savitzky-Golay technique is that

values outside of the range of the original signal can be introduced. In particular, where the

motion trace rises suddenly from zero, the smoothed trace will contain values below zero. These

values are replaced with zero.

Figure 6.3 (a) shows how this effects the motion trace. The two lower traces in the figure

show how the s(n) is also smoothed by this filtering, resulting in fewer detected minima.

6.2.2.2 Relative difference gating

Using the sign change of d(n) to detect minima results in undesired detection in portions of the

signal where the actual changes in signal level are relatively small. Signal differences are gated

using a locally defined threshold to prevent detection of these minima. The threshold d̂(n) is

found by

d̂(n) = median
(n−8)≤n′≤(n+8)

(|d(n′)|) (6.5)

d(n) is then gated according to

d(n) =

{

d(n), d(n) ≥ 0.4d̂(n)

0, d(n) < 0.4d̂(n)
(6.6)

Figure 6.3 (b) shows how small changes in the signal are flattened out by this method, thereby

suppressing spurious minima.

6.2.2.3 Median filtering the sign signal

Brief changes in the sign of d(n) are unlikely to correspond to significant minima in the motion

trace. Figure 6.3 (c) shows a segment of the motion trace in which two spurious minima are

detected due to noise in the signal. These spurious minima are visible as spikes in the middle

plot. Median filtering is the preferred method for dealing with such impulsive noise; here, a

three-tap median filter is applied. The median filtered sign signal is designated ŝ(n). The

bottom trace in figure 6.3 (c) shows ŝ(n), where the spurious minima have been removed.

6.2.2.4 Trace minima as edit points

To investigate the effectiveness of the filtering methods described above, edit point detection

is evaluated using all the located minima as candidate edit points, for each possible filtering

scheme. Table 6.1 illustrates the performance of each filtering approach for three sequences.

In the table, M is the unfiltered motion trace and M̂ is the trace with Savitzky-Golay

filtering applied. The subscript s indicates that median filtering of s(n) has been applied, and

the subscript r shows that relative difference gating has been applied. A total of eight possible

smoothing schemes are possible by combining these steps.

No single scheme attains the best performance (in the MPR—mean of precision and recall—

sense) in all three sequences. However, in each case the best performing scheme incorporates
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Figure 6.3: Minima detection in the Motion Trace.
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Savitzky-Golay smoothing. On the basis of the table, the M̂r signal is chosen as the best

compromise over all three sequences. In the remainder of this work, the motion trace filtered

with Savitzky-Golay filtering and relative difference gating, but median filtering is not applied

to s(n).

The low precision scores evident in the table suggest that not all spurious minima are due

to noise. There are motion characteristics that introduce minima in the motion trace which do

not correspond to edit points. For example, in sequences with a non-homogeneous background,

the movement of a dancer’s limb over background areas of differing colour can result in different

levels of motion detection, despite the actual motion remaining constant. A related problem

is that of self-occlusion, where a dancer’s limbs cross one in front of the other. The limbs are

generally the same colour, so as they cross over the amount of motion detected drops suddenly.

Such cases will introduce false alarms even when the smoothing and minima detection schemes

applied are optimal.

6.2.3 Peaks in the Motion Trace

As a higher level of motion trace analysis, the signal can be considered as a series of peaks. Each

peak is expected to correspond to a movement in the video, and it is at the end of each peak

that the percussive motion is found. The set of minima found in the motion trace as described

above are used to parse the trace into peaks: each peak is the region between two successive

minima. The goal is to classify peaks in the motion trace to inform whether they correspond to

movement in the dance or not.

The pth peak is specified by its start and end locations and the location of the maximum

value within the peak:

ζleftmin(p) = M(p) (6.7)

ζrightmin(p) = M(p + 1) (6.8)

ζmax (p) = arg max
p′∈(M(p),M(p+1))

M(p′) (6.9)

The widths of the ascent and descent regions of the peak are denoted by ζascentwidth(p) and

ζdescentwidth(p), given by

ζascentwidth(p) = ζmax (p) − ζleftmin(p) (6.10)

ζdescentwidth(p) = ζrightmin(p) − ζmax (p) (6.11)

These characteristics are illustrated in figure 6.4.

The remainder of this section is concerned with classifying peaks into desired and undesired

for the purpose of identifying sudden stop edit points.
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#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence greenDancer

No Savitzky-Golay filtering

M 77 297 2 0.21 0.97 0.59 1 0.91 3.35

Ms 65 130 14 0.33 0.82 0.58 0 0.35 6.08

Mr 79 275 0 0.22 1.00 0.61 0 0.47 3.15

Mrs 66 112 13 0.37 0.84 0.60 0 0.50 6.99

With Savitzky-Golay filtering

M̂ 63 116 16 0.35 0.80 0.57 1 0.81 6.90

M̂s 59 82 20 0.42 0.75 0.58 1 0.75 7.12

M̂r 66 108 13 0.38 0.84 0.61 1 0.59 7.51

M̂rs 63 70 16 0.47 0.80 0.64 1 0.71 7.85

Sequence maleDancer

No Savitzky-Golay filtering

M 100 328 3 0.23 0.97 0.60 1 0.55 3.38

Ms 87 124 16 0.41 0.84 0.63 1 0.80 6.58

Mr 101 315 2 0.24 0.98 0.61 1 0.63 3.01

Mrs 86 107 17 0.45 0.83 0.64 1 0.80 5.38

With Savitzky-Golay filtering

M̂ 91 122 12 0.43 0.88 0.66 2 1.21 5.68

M̂s 73 72 30 0.50 0.71 0.61 2 1.11 6.35

M̂r 89 114 14 0.44 0.86 0.65 1 0.87 5.32

M̂rs 75 69 28 0.52 0.73 0.62 1 1.08 5.89

Sequence ballet2

No Savitzky-Golay filtering

M 115 130 4 0.47 0.97 0.72 1 0.57 2.98

Ms 105 47 14 0.69 0.88 0.79 0 0.32 3.95

Mr 115 134 4 0.46 0.97 0.71 0 0.05 2.40

Mrs 108 46 11 0.70 0.91 0.80 0 -0.09 3.62

With Savitzky-Golay filtering

M̂ 110 50 9 0.69 0.92 0.81 0 0.29 3.55

M̂s 101 34 18 0.75 0.85 0.80 0 0.30 3.51

M̂r 111 54 8 0.67 0.93 0.80 0 0.04 3.49

M̂rs 101 39 18 0.72 0.85 0.79 0 0.07 3.17

Table 6.1: Motion trace minima as edit points: performance in three sequences
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Figure 6.4: Anatomy of a peak.

6.2.4 Peak-relative location of edit points

In order to describe the location of a frame relative to peak features, the peak-relative location

is introduced, defined by

ζprel (n, p) =







1 − n−ζleftmin (p)
ζascentwidth (p) , if n ≤ ζmax (p)

n−ζmax (p)
ζdescentwidth (p) , if n > ζmax (p)

(6.12)

such that values from -1 to 0 cover the ascent region of the peak, and 0 to 1 lie in the descent

region. The peak-relative location is also illustrated in figure 6.4.

It has been outlined above that due to noise, differences in background contrast, and self-

occlusion, not all minima in the motion trace correspond to edit points. Analysis of the peak-

relative location of stops in the ground truth data shows that nor are all edit points located at

minima in the motion trace. The distributions of peak-relative location for the ground-truth

edit points in three sequences are shown in figure 6.5.

In general, this phenomenon is due to the fact that a ‘stop’ or phrase transition in a dance

is rarely located within a single frame. As described above, a dancer coming to rest rarely

exhibits a single stop frame due to a lack of synchronisation between limbs, residual motion

in the dancer’s clothing, or simply the difficulty of decelerating instantaneously to a full stop.

This is true in particular of sequences where the dancer is wearing flowing clothing, where the
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(b) maleDancer sequence
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(c) ballet2 sequence

Figure 6.5: Edit point location within peaks.

dancer is shot relatively close up (this amplifies the residual motion after a stop), and where the

dance is characterised more by definite stops, as in flamenco dance, than in flowing dance such

as ballet.

These factors account for the differences in the three distributions shown in figure 6.5. The

greenDancer and maleDancer sequences depict flamenco dance. This staccato dance style fea-

tures numerous very definite stops, which means that the peaks in the motion trace have long

descents. Therefore the location of the edit point within the peak descent need not correspond

to the peak minimum. In the greenDancer sequence in particular, the motion due to the dress

often results in a long, shallow peak descent after the dancer herself has stopped moving.

The ballet2 sequence depicts a ballet dancer dancing a solo ballet routine. As this dance is

much more flowing, transitions between dance phrases are more likely to consist of deceleration

followed by acceleration than to stops where the motion trace declines to zero. For this sequence,

then, peaks in the motion trace correspond more exactly to individual dance movements. Fur-

thermore, the dancer’s clothing in this sequence is relatively inert, and does not exhibit great

amounts of secondary motion. For these reasons, many more edit points are located exactly at

the peak minimum.

6.2.5 Peak Characteristics

Various characteristics of the peak can be employed to determine which peaks are most likely

to correspond to a distinct motion phrase in a video. These heuristics are combined to rank

the peaks according to the likelihood of their corresponding to a stop. In this section, four

peak characteristics are described, and the distributions found for each characteristic in desired

and undesired peaks are presented. Classification can then proceed based on parametric or

non-parametric representation of these distributions.

Desired peaks are those which correspond to motion phrases, and so their minima correspond

to edit points. In this analysis, a peak is taken to correspond to an edit point if there is a ground-
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truth edit point in the peak’s descent region, i.e. if

∃(i).G(i) ∈ [ζmax , ζrightmin + 3] (6.13)

where a tolerance of three frames after the peak’s right minimum is allowed.

For each characteristic described, a histogram of the distribution of the characteristic values

in desired and undesired peaks is found. These distributions must then be represented by some

means appropriate for classification. Two approaches to this issue, parametric and nonpara-

metric distribution modelling, are now described. A description of the four peak characteristics

used follows.

6.2.5.1 Parametric Peak Distributions

To model an empirical distribution, i.e. a histogram of values, as a parametric distribution,

the appropriate form of distribution must first be chosen. This is achieved by comparing the

histogram to a ‘gallery’ of distribution functions, such as that which appears in [72]. The

parameters for the analytic distribution are then found by obtaining an initial estimate via the

method of moments, and then refining this estimate by some iterative procedure. In this work,

the parameters are refined using a simplex search [235,258] to minimize the sum of the squared

bin-to-bin differences between the histogram and the estimated distribution; the parameters

found by this criterion are then the least-squares estimate.

6.2.5.2 Nonparametric Peak Distributions

Instead of choosing a parametric probability distribution function by inspection of the histogram,

the histogram can itself be used as the distribution after suitable smoothing. This is approach is

referred to as nonparametric density estimation, though in most cases some parameter must in

fact be chosen to determine the amount of smoothing applied. Here, a Parzen density estimation

approach is adopted. The probability of a value z, according to an existing set of samples X , is

given by

PParzen(z) =
1

|X |
∑

x∈X
K(z, x) (6.14)

where K is some suitable kernel. In this work, a Gaussian kernel function is used:

K(z, x) =
1

√

(2π)σ2
exp

(

− 1

2σ
(z − x)2

)

(6.15)

The smoothing parameter is the variance of the Gaussian, σ2, and is set to 0.5 times the

histogram bin width.

6.2.5.3 Peak Descent

The first characteristic considered is the peak descent. The descent of peak p, designated

ζdescent(p), is the fall in the value of the motion trace between the peak maximum and the
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peak’s end.

ζdescent = M̂(ζmax (p)) − M̂(ζrightmin(p)) (6.16)

It is expected that smaller decreases in the amount of motion in the sequence are less likely

to be significant. Peaks are classified on log(ζdescent (p)), as the range in descent values is very

high. Figure 6.6 illustrates the distributions of log peak descents for desired and undesired

peaks in several sequences. It can be seen from the figure that in each sequence, the distribution

for undesired peaks is different to that for desired peaks, having a greater propensity to lower

descent values. To capture the asymmetry of the distribution, it is modelled as a Gumbel

minimum distribution:

f(x) =
1

β
e

−(x−µ)
β e(−e

(x−µ)
β ) (6.17)

6.2.5.4 Peak Symmetry

A second consideration is that a peak that descends only a small fraction of its ascent is unlikely

to correspond to a desired stop. Define the peak ascent to be the rise in the value of the motion

trace between the peak start and the maximum point,

ζascent = M̂(ζmax (p)) − M̂ (ζleftmin(p)) (6.18)

Then the logarithm of the ratio of the peak descent to the peak ascent is a measure of the peak

symmetry:

ζsymmetry = log

(
ζdescent

ζascent

)

(6.19)

Figure 6.7 illustrates peak symmetries for desired and undesired peaks in several sequences. An

asymmetric distribution is chosen for the symmetry values, as a peak whose descent is greater

than its ascent may well correspond to a desired stop. Therefore, this characteristic is modelled

using the Gumbel maximum distribution.

f(x) =
1

β
e

(−x−µ)
β e(−e

−(x−µ)
β ) (6.20)

However, it is evident from the empirical distributions that several peaks have very skewed

asymmetries, saturating the histogram range. To accommodate this feature of the histogram,

it is modelled as a mixture distribution, where the Gumbel maximum distribution parame-

ters are found over the histogram excluding the final bin, and a third parameter is added, p1,

corresponding to the fraction of peaks having symmetry scores greater than or equal to 5.

6.2.5.5 Peak Relative Descent

A further characteristic is the magnitude of the descent of a peak, and hence the corresponding

stop, relative to the amount of motion at that point in the sequence. This is designated the
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Figure 6.6: Peak descent histograms: from top to bottom, the greenDancer, maleDancer, and

ballet2 sequences. The estimated Gumbel minimum distribution is shown.
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Figure 6.7: Peak symmetry histograms: from top to bottom, the greenDancer, maleDancer, and

ballet2 sequences. The estimated Gumbel maximum distribution is shown.
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peak relative descent:

ζreldesc =
ζdescent

M̂(ζmax )
(6.21)

Figure 6.8 illustrates the distribution of this value for several sequences. As this characteristic

is limited to the range 0 . . . 1, the distribution of values is modelled as a Beta distribution.

f(x) =
x(p−1)(1 − x)(q−1)

B(p, q)
for 0 ≤ x ≤ 1, p, q > 0 (6.22)

Where the motion trace ascends suddenly from a low magnitude, Savitzky-Golay filtering

can introduce values below zero. This results in an artificially high relative descent score for

the preceding peak, particularly in the maleDancer and ballet2 sequences. To allow for this,

the Beta distribution is fit to the histogram excluding the final bin, and the fraction of peaks

having relative descent 1 is considered a third parameter of the distribution, designated p1. This

third parameter has little discriminatory power, and the chief benefit of the approach is more

accurate characterisation of the remainder of the histogram by the Beta distribution.

6.2.5.6 Peak Noise

Many spurious peaks are the result of excessive levels of noise in the motion trace. Therefore,

more confidence is associated with peaks in regions where the motion trace is relatively smooth.

To quantify this, the absolute difference between the smoothed motion trace M̂(n) and the

unfiltered M(n) is found for each point in the peak descent, and the median of these values

found.

ζnoise(p) = median
ζmax≤n≤ζdescent

{

|M(n) − (̂M)(n)|)
}

(6.23)

Higher median values correspond to noisier sections of the motion trace, and thus less reliable

peaks. Figure 6.9 illustrates that peaks with very high noise scores are more likely to be false

alarms. The distribution of this characteristic is modelled as a Gamma distribution.

f(x) =
x(γ−1)e(−x)

Γ(γ)
for x ≥ 0 (6.24)

6.2.5.7 Summary

Four peak characteristics have been described, and their distributions for each of three sequences

presented. The peak shown in figure 6.4 illustrates these characteristics: this peak has an ascent

of 3617 motion pixels and a descent of 2687; the symmetry score is 0.74, and the relative descent

0.85. The median relative noise in the ascent region is 0.12, while in the descent region it is

0.04.

Figure 6.10 show the distributions obtained by combining the peaks for each of the three

sequences, and the least-squares fit for the parametric distributions shown. Figure 6.11 shows

the Parzen window fit to the same distributions. These combined distributions are then used
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Figure 6.8: Peak relative descent histograms: from top to bottom, the greenDancer, maleDancer,

and ballet2 sequences. The estimated Beta distribution is shown.
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Figure 6.9: Peak noise histograms: from top to bottom, the greenDancer, maleDancer, and

ballet2 sequences. The estimated Gamma distribution is shown.
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for peak classification. The prior probability that a peak in the motion trace should correspond

to an edit point was found to be 0.507.

6.2.6 Peak Classification

The distributions derived above for peak characteristics can be used to build a classification

system distinguishing undesired peaks from desired peaks. Consider peak classification based

on only one of the characteristic distributions developed above, the peak descent. Let ζ(p) be a

random variable taking the value 1 when peak p is desired, and 0 otherwise, and ζdescent(p) is

the descent of the pth peak. Applying Bayes’ law gives

P (ζ(p) = 1| log(ζdescent (p)) = θ) ∝ P (log(ζdescent(p)) = θ|ζdescent(p) = 1)P (ζ(p) = 1) (6.25)

P (ζ(p) = 0| log(ζdescent(p)) = θ) ∝ P (log(ζdescent(p)) = θ|ζ(p) = 0)P (ζ(p) = 0) (6.26)

where the normalising factor P (log(ζdescent (p)) = θ) has been disregarded, as it is common to

both expressions. The distributions P (log(ζdescent (p)) = θ|ζ(p) = 1) and P (log(ζdescent (p)) =

θ|ζ(p) = 0) are determined empirically, as described above; these are the likelihood distributions.

The prior distribution over P (ζ(p)) can be determined from ground truth data. The peak is

then classified according to the class having higher posterior probability.

Class assignments are computed using the negative logarithm of the posterior, a quantity

referred to here as the energy associated with a particular classification. Peaks are assigned

to the class having lower energy, which is equivalent to the class having the higher posterior

probability. This avoids issues of numerical stability.

The usual approach to classification when multiple features are being combined is to assume

that the features are independent. The posterior probability for features F1, F2, F3 can then be

factorised:

P (ζ(p)|F1, F2, F3) ∝ P (F1|ζ(p)) P (F2|ζ(p)) P (F3|ζ(p)) P (ζ(p)) (6.27)

This is equivalent to summing the energies for each feature. However, the four peak character-

istics described above are not necessarily independent, so this approach may be erroneous. To

investigate this, the classification system is also evaluated where each class energy is taken as

the minimum energy of the combined features, which corresponds to

P (ζ(p)|F1, F2, F3) ∝ max {P (F1|ζ(p)), P (F2|ζ(p)), P (F3|ζ(p))}P (ζ(p)) (6.28)

More sophisticated techniques, such as the use of Linear Discriminant Analysis (LDA) [92] to

form a weighted combination of each of the likelihood values, could also be applied.

6.2.6.1 Classification Performance

The main lobes of the distributions for each peak characteristic are generally overlapping, and

so classification of peaks is a difficult problem. A number of variations are possible within the
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Figure 6.10: Maximum Likelihood estimation of densities for peak statistics of the greenDancer,

maleDancer, and ballet2 sequences combined.
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Figure 6.11: Parzen estimations of the densities for peak statistics for the greenDancer,

maleDancer, and ballet2 sequences combined.
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Characteristics ROC Area

0001 0.78558

0010 0.567169

0100 0.689396

1000 0.531386

0011 0.786952

0001 0.78558

(a) Parametric, Method of Mo-

ments fit

Characteristics ROC Area

0001 0.776828

0010 0.60421

0100 0.689271

1000 0.545382

1101 0.781299

0001 0.776828

(b) Parametric, Least Squares fit

Characteristics ROC Area

0001 0.791739

0010 0.636308

0100 0.698463

1000 0.550925

1111 0.806034

0001 0.791739

(c) Parzen fit

Table 6.2: Peak classification performance as area under the ROC curve. In this table, com-

binations of peak characteristics are represented as a four-digit binary number whose digits,

from left to right, correspond to the ζnoise , ζreldesc , ζsymmetry , and log(ζdescent) characteristics.

For example, the 1101 classifier uses all characteristics except symmetry. The top four rows

present the result for each of the four characteristics in isolation. The next row shows the best

feature combination with factorised likelihood, as in equation 6.27, and the last shows the best

combination using 6.28.

classification system: the combination of peak characteristics to employ; whether to represent

the distributions parametrically or using Parzen density estimation; and whether to assume the

features are independent, as in equation 6.27, or to classify on the basis of the minimum feature

energy as in equation 6.28.

The standard measure of performance for classification systems is the area under the Receiver

Operating Characteristic (ROC) curve [92]. Table 6.2 shows the value of this metric for each

approach to classification. The best classifier uses Parzen density estimation and all four peak

characteristics, achieving an area under the ROC of 0.80. It is clear that most of the classification

power is generated by the ζdescent characteristic, which used alone results in an area under the

ROC curve of 0.79.

6.2.7 Edit Point Location and Peak Descent Slope

Where peaks in the motion trace correspond to movements constituting a sudden stop in the

dance, it is not always the case that the respective edit point is exactly at a minimum in the

motion trace. In some sequences it is found that the edit point is more likely to in fact lie at

some intermediate point along the descent. For example, as described above, in the greenDancer

sequence the continued motion of the dancer’s clothing after the dancer’s stop results in edit

points being more likely to occur at some point between the peak maximum and its minimum

point.

Observation of edit point locations in the motion trace suggests that edit points are more
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Figure 6.12: Location of edit points against the descent slope of the associated peak. Negative

values indicated that the edit point is before the peak minimum. The black line indicates the

most likely location for a given slope.

likely to be close to the minimum point of a motion peaks with steeper descents. Figure 6.12

shows the distribution of edit point location relative to the peak minimum, versus peak descent

slope. The black line traversing the figures shows the offset from the peak minimum most

likely to correspond to the edit point for each slope value. As anticipated, the variance of the

distance from the edit points to the peak minimum is greatest for shallow peak descents. This

is particularly true of the greenDancer and maleDancer sequences. Figure 6.12 (d) shows this

distribution found over the three training sequences. Here it is clear that overall, the most likely

location for an edit point is about one frame before the peak minimum, for all peak descent

slopes.
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6.2.8 Edit point detection using peak classification

Recall that the classification procedure operates by assigning to each peak an energy, and as-

signing each peak to the class having the least energy. The difference between the two energies

is effectively a confidence measure pertaining to the classification. Thresholds on this confidence

measure can be used to bias the classification procedure towards higher precision, or higher re-

call; different values of the threshold correspond to different points on the ROC curve. Table 6.3

illustrates the application of this threshold.

Each line of results for each sequence is the outcome of edit point detection after peak

classification using the 1111 classifier (i.e. all four peak characteristics), with Parzen density

estimation and product-likelihood. Where the bias is log(0.5), a peak is only classified as desired

if (P (ζ(p)) = 1) ≥ 2(P (ζ(p) = 0)). The second line corresponds to a bias of 0, and hence a peak

is classified as desired if (P (ζ(p)) = 1) ≥ (P (ζ(p) = 0)). In the third line, peaks are classified as

undesired only where (P (ζ(p)) = 0) ≥ 2(P (ζ(p) = 1)), and the last line has ‘infinite bias’—in

other words, all peaks are accepted. Increasing the bias value improves the recall at the expense

of precision.

In these analyses, the edit point associated with each peak is placed at the peak minimum.

While figures 6.5 and 6.12 illustrate that this is not always accurate, it remains about the best

compromise for edit point location, as evidenced by the low scores in table 6.3 in the MDmedian

and MDmean measures.

For the maleDancer sequence, using peak classification introduces a considerable improve-

ment in performance, in the MPR sense. The best result achieved with classification is 0.75,

compared to 0.66 using the minima only (table 6.1). No improvement is achieved for the other

two sequences tested. However, using peak classification does allow each detected edit point

to be measured for confidence. To some extent, this confidence accords with the perceptual

strength of the edit point, as illustrated on the accompanying DVD. For these reasons, the peak

classification approach is key to edit point detection using a combination of traces, described at

the end of this chapter.

6.3 Edit Point Identification using the Foreground Bounding

Box

The bounding box of the local motion map, equivalent to the DFD bounding box introduced

in chapter 2, can be useful in the identification of some edit points. This is because often a

dance phrase culminates in a limb outstretched to its maximal extent. Furthermore, points in

the sequence where a dancer’s limbs are at maximal extent can be satisfying edit points even

where these points do not demarcate dance phrase transitions.

The foreground bounding box can be characterised by the position of each edge, and also

its width and height. Figure 6.13 shows each of these measures over a range of 81 frames in the
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bias #H #FA #M P R MPR MDmedian MDmean MDvar

Sequence greenDancer

log(0.5) 38 21 41 0.64 0.48 0.56 2 1.32 8.60

log(1) 52 39 27 0.57 0.66 0.61 1 0.88 8.30

log(2) 58 47 21 0.55 0.73 0.64 1 0.93 7.54

∞ 66 108 13 0.38 0.84 0.61 1 0.59 7.51

Sequence maleDancer

log(0.5) 48 6 55 0.89 0.47 0.68 1 1.08 5.48

log(1) 66 10 37 0.87 0.64 0.75 1 1.24 5.02

log(2) 73 31 30 0.70 0.71 0.71 1 0.99 5.74

∞ 89 114 14 0.44 0.86 0.65 1 0.87 5.32

Sequence ballet2

log(0.5) 88 38 31 0.70 0.74 0.72 0 0.17 3.18

log(1) 97 42 22 0.70 0.82 0.76 0 0.07 3.30

log(2) 103 50 16 0.67 0.87 0.77 0 0.15 3.11

∞ 111 54 8 0.67 0.93 0.80 0 0.04 3.49

Table 6.3: Motion trace minima as edit points: biased peak classification

greenDancer sequence. There are four edit points in the ground truth for this sequence; their

locations are shown by the vertical lines in the bounding box trace, and the edit point frames

themselves are shown above the plots. Each edit point is located at or near a local extremum

in the various bounding box traces.

The question of whether to use the location of the bounding box edges, as shown in figure 6.13

(a), or to use the derived measures of the bounding box width and height, shown in figure 6.13

(b), has been given some consideration. Clearly, the mutual information between these two

approaches is very high. The more intuitively appealing measure is the bounding box dimensions,

and the correspondence between edit points and trace extrema is more apparent here. However,

estimates of the foreground region bounding box are highly susceptible to even slight global

motion failure, and this can result in very high levels of noise in the bounding box trace. Where

this happens, it may be that only one side of the bounding box is affected by global motion

estimation failure. The opposite side, unaffected by this failure, may still be useful for edit point

identification. If the derived measures of bounding box dimension are used, on the other hand,

the ‘clean’ information in the uncorrupted side is lost. Therefore, all six traces are assessed for

their relevance to edit point detection. These are designated the bbminx , bbmaxx , bbminy , bbmaxy ,

bbwidth, and bbheight traces.
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(a) Foreground bounding box edge positions. From top

to bottom: right; left; top; bottom.
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(b) Foreground bounding box dimensions. From top to

bottom: width; height.

Figure 6.13: Edit points and the foreground bounding box. The vertical blue lines correspond

to the four edit points shown. Some bounding box traces have been vertically shifted to improve

separation.

6.3.1 Filtering the bounding box traces

Detecting the foreground bounding box reliably depends on a static background, a localised

foreground region, and highly accurate global motion estimation. It is found that this last

factor in particular introduces a high level of impulsive noise into the bounding box traces.

While the refinement to global motion estimation presented in chapter 2 improves the quality

of the bounding box greatly, failures can still occur. These failures are often associated with

particularly difficult passages in the sequence, and so multiple temporally adjacent failures are
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common. Median filtering is an appropriate technique for mitigating the effect of Global Motion

Estimation (GME) failure on the traces.

The effect of the resulting noise can be seen in the top trace in figure 6.14. It can be seen

that in several regions, multiple adjacent values are lost. Dealing with these large areas of loss

requires a very large median filter. However, median filtering the whole signal with a large filter

would result in considerable loss of resolution. Therefore, an iterative scheme is employed where

the signal is repeatedly smoothed with progressively larger median filters.

Denote the trace before smoothing by t0. The smoothing scheme is

tmi = medianFilter(ti, 2i + 3) (6.29)

ti+1(n) =

{

tmi (n), |ti(n) − ti(n− 1)| < 100

ti(n), otherwise
(6.30)

Here medianFilter(S, n) denotes the result of median filtering a signal S with a median filter

of width n. Jumps in the trace value of more than 100 pixels are taken to be due to noise.

These noisy values are then replaced with values from the signal after median filtering, where

the median filter width is increased by two at each iteration. The algorithm is terminated when

there are no jumps greater than 100 in the trace, or when the median filter width is greater than

50.

The lower trace in figure 6.14 illustrates the results of the process, applied to the bbminx trace

of the maleDancer sequence. This process is applied to all six bounding box traces. It is noted

here that noise detection based on comparison of the filtered signal with the original, i.e. using

ti+1(n) =

{

tmi (n), |ti(n) − tmi (n)| < 100

ti(n), otherwise
(6.31)

might be considered a more intuitive scheme for noise reduction with median filtering. This

scheme was evaluated, and found to yield worse results for trace smoothing than 6.30.

6.3.2 Trace Extrema as Edit Points

To first establish whether bounding box trace extrema can be of any use in dance phrase de-

tection, the correspondence between all trace extrema and ground truth edit points is assessed.

Here every local minimum in the trace is taken as a candidate edit point. Minima detection in

each trace was assessed using each of the eight smoothing schemes described in section 6.2.2.4.

The results are presented in appendix C.1.1.

For these traces, the best smoothing scheme overall includes Savitzky-Golay filtering and

relative difference gating, but not median filtering of the sign of the first derivative. Performance

is lower than in the motion trace, with precision values between 0.45 and 0.55 and recall typically

in the range 0.7—0.8.
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Figure 6.14: Impulsive noise reduction in the bbminx trace of the maleDancer sequence. The

upper figure shows the unfiltered values, while the lower plot shows the values after filtering.

6.3.3 Mutual redundancy between bounding box traces

The extent to which these traces are mutually redundant can be investigated by examining how

many ground truth edit point detections are unique to each one. This information is shown

in figure 6.15. The minima detected by each trace were detected, and the overlap between the

edit points thus detected was found. For example, figure 6.15 (a) shows that the bbwidth trace

discovered 7 edit points that were not also discovered by either the bbminx or bbmaxx traces. 192

edit points were found common to all three traces, and 4 edit points were missed by all three.

A similar analysis has been applied to the false alarms detected by the bounding box traces.

It is apparent that each trace discovers some unique edit points. Furthermore, the false

alarms detected by each trace are moderately disjoint. It is therefore to be expected that some

combination of the traces should improve edit point detection performance. Edit point detection

through combined trace analysis is investigated in the final section of this chapter.

6.3.4 Peaks in the bounding box traces

The six bounding box measures are parsed into a succession of peaks in the same way as the

motion trace, described above. Figure 6.16 shows the distribution of peak-relative locations for

ground truth editpoints, aggregated over three sequences. The figure illustrates that in most

cases, the distribution is quite close to uniform—in other words, many edit points are not located

near extrema in the bounding box traces. There are moderate peaks at 0 and 1 in most of the

distributions, suggesting that between 10 and 20 percent of edit points are located at local

extrema. It may be speculated that these should be amongst the more visually arresting edit

points.
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(a) Bounding box trace matches
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(b) Bounding box trace misses
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(c) Bounding box trace matches
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(d) Bounding box trace misses
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(e) Bounding box trace matches
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(f) Bounding box trace matches

Figure 6.15: Overlap in edit point detection and false alarms for the bounding box traces, over

the greenDancer, maleDancer, and ballet2 sequences.
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(a) Left edge trace
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(b) Right edge trace

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

Peak−relative location

F
ra

ct
io

n 
of

 e
di

t p
oi

nt
s

(c) Top edge trace
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(d) Bottom edge trace
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(e) Width trace
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(f) Height

Figure 6.16: Peak-relative location distributions for edit points relative to peaks in the fore-

ground region bounding box traces, in the greenDancer, maleDancer, and ballet2 sequences

combined.
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bbminx 0.51895 bbmaxx 0.42776 bbminy 0.51843

bbmaxy 0.49422 bbwidth 0.43799 bbheight 0.41972

Table 6.4: Prior probability of a peak’s corresponding to an edit point for the bounding box

traces.

6.3.5 Classifying bounding box trace peaks

As in the case of the motion trace, classifying the peaks in each trace as either desired or

undesired should improve edit point detection. To this end, the distributions of the four peak

characteristics introduced previously have been examined for desired and undesired peaks in

each of the six traces. Here, a desired peak is one which contains a ground truth edit point near

its maximum point or either minimum, i.e. those peaks for which

∃(i).G(i) ∈ [ζmax − 0.1ζascentwidth , ζmax + 0.1ζdescentwidth ]

∨∃(i).G(i) ∈ [ζleftmin , ζleftmin + 0.1ζascentwidth ] (6.32)

∨∃(i).G(i) ∈ [ζrightmin − 0.1ζdescentwidth , ζrightmin ]

The same four peak characteristics are used as for the motion trace, with the variation that here

the peak noise characteristic is assessed over the entire peak range rather than over the descent

only. The distributions found are presented in appendix C.1.2. The prior probabilities for each

trace are shown in table 6.4.

The histograms show that the peak features have very similar distributions in both the

desired and undesired classes in all six bounding box traces. The similarity of the classes makes

distinguishing between them a challenging undertaking. Classification performance is presented

in table 6.5. As in table 6.2, the performance of classifiers using each characteristic singly is

presented, followed by the best combination of classifiers with product-likelihood, and the best

combination with best-likelihood. In all cases, Parzen density estimation is used to represent

the peak characteristic distributions.

In the case of most traces, the best scoring single characteristic is the peak symmetry, while

the noise and relative descent characteristics offer comparatively poor performance. The best

performance overall is achieved in the bbminx trace, with an area under the ROC curve of 0.77.

Performance of edit point detection using the bounding box traces after peak classification

is not assessed here. However, the traces and classification scores will be employed in a method

combining all traces for edit point detection, described in section 6.7.
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Characteristics ROC Area

0001 0.656869

0010 0.670318

0100 0.581573

1000 0.492788

1111 0.777469

0010 0.670318

(a) bbminx

Characteristics ROC Area

0001 0.657609

0010 0.619706

0100 0.611278

1000 0.524403

0011 0.694991

0001 0.657609

(b) bbmaxx

Characteristics ROC Area

0001 0.633026

0010 0.670392

0100 0.643503

1000 0.526547

0011 0.734637

0010 0.670392

(c) bbminy

Characteristics ROC Area

0001 0.582663

0010 0.660786

0100 0.547858

1000 0.607486

1011 0.689373

0010 0.660786

(d) bbmaxy

Characteristics ROC Area

0001 0.609192

0010 0.649232

0100 0.583862

1000 0.639986

1011 0.706823

0010 0.649232

(e) bbwidth

Characteristics ROC Area

0001 0.606779

0010 0.623221

0100 0.573015

1000 0.524777

1111 0.684614

0010 0.623221

(f) bbheight

Table 6.5: Peak classification performance for foreground bounding box traces: area under ROC

curve. Again, combinations of peak characteristics are represented as a four-digit binary number

whose digits, from left to right, correspond to ζnoise , ζreldesc , ζsymmetry , and log(ζdescent ).
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Figure 6.17: An edit point and the local motion vectors pertaining to it. The change of direction

in the dancer’s foot is clearly reflected in the vector field in that region. The vectors shown are

backward motion, at a blocksize of 17x17.

6.4 Motion Estimation Based Edit Point Identification

Local motion estimation, introduced in chapter 2, assigns a motion vector to each block in a

video frame, intended to indicate the position of the corresponding block in an adjacent frame.

This analysis yields considerable information regarding the motion content of the sequence,

which could be expected to be of use in identifying edit points. Figure 6.17 shows how a change

in direction of a dancer’s limb is reflected in the associated vector field.

Seven measures are extracted from the vector fields for each sequence. The first is the mean

vector magnitude, with gives an alternative measure of the amount of motion in each frame

(alternative to the motion trace, which uses motion detection). Where this measure descends

to a low value, a drop in the amount of motion in the sequence is expected—perhaps indicating

a sudden stop edit point in the sequence. This trace is designated vfM .

The relationship between the mean vector magnitude in a frame and the amount of motion

is clear. However, in some cases an individual component of the vector can be more informative

than the overall vector magnitude. For example, a dancer’s ‘bounce’ may involve a transition

from moderate-magnitude positive y vector components, to moderate-magnitude negative y

components. This change in direction need not be indicated in the vfM trace, and so the mean

x and y components of the vector field are also considered, in traces designated vfx and vfy .

These changes of direction will appear as zero crossings in the traces. Points where either
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Figure 6.18: Taking the absolute value of vector component values converts zero crossings to

peak minima. The trace shown is the vfy trace over some 70 frames of the ballet2 sequence;

the upper trace is the original signal, and the lower shows the full-wave rectified version. The

vertical stems mark ground-truth edit points.

component declines to zero are also of interest, so the traces are calculated using the absolute

mean magnitude. Both such points of interest then correspond to peak endpoints, as in other

traces. Figure 6.18 illustrates this correspondence.

A second way to incorporate direction changes in the vector field is to employ the mean

vector angle; this trace is designated vfθ. In the case of this trace, changes in the angle are of

interest, and so both maxima and minima can be considered candidate edit points.

Finally, because most of the vectors in a vector field for a sequence depicting a single dancer

will be background vectors, with a magnitude of zero, the variance of the vector field magnitude

as a whole is at a minimum when the local motion vectors are also close to zero. The three

magnitude traces, then, are supplemented by the variances of the same measures. The resulting

three traces are designated vfσ2
M

, vfσ2
x
, and vfσ2

y
, and correspond to the variance of the vector

magnitudes, vector x components, and vector y components, over the entire vector field. These

may be expected to offer more robust detection of sudden stops than the magnitude measures.
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6.4.1 Trace extrema as edit points

As a first measure of the usefulness of the vector field traces in edit point identification, the

performance of vector field trace extrema as edit point detectors is assessed. For the vfθ trace,

both trace minima and maxima are considered; in all other cases, trace minima only are se-

lected. Each of the eight smoothing methods was evaluated, and the results are presented in

appendix C.2.1. The best smoothing scheme overall uses Savitzky-Golay smoothing, relative

difference gating, and median filtering of the sign of the first derivative. All the vector field

traces achieve mean precision / recall performance in the 0.60 to 0.70 range.

6.4.2 Mutual redundancy between vector field traces

A second initial assessment is to determine the overlap amongst the seven traces derived from

the motion vector field. This is assessed in a similar manner to the bounding box traces. The

results are shown in figure 6.19. It can be seen that each trace discovers some unique edit points,

and that the false alarm sites are moderately disjoint.

6.4.3 Peaks in the vector field traces

The traces are smoothed and parsed into peaks in the same way as the motion trace, described

above. To confirm the intuitions presented above, the location of ground truth edit points

relative to peaks in the traces was investigated. The results are presented in figure 6.20. The

top row shows that edit points are indeed associated with minima in the vfM , vfx , and vfy

traces. Figure 6.20 (d) shows that for the vfθ trace, edit points are most likely to be found at

changepoints in the signal—i.e. peak maxima and minima. Lastly, in the bottom three plots, it

is observed that in the vfσ2
M

, vfσ2
x
, and vfσ2

y
traces, edit points are more likely to occur further

away from peak maxima.

6.4.4 Classifying vector field trace peaks

Peak classification is also attempted for each of the seven traces. The distributions found for

the peak characteristics are shown in appendix C.2.2. For the vfM , vfx , and vfy traces, a peak

is classified as desired if there is an edit point near the right minimum, i.e. if

∃(i).G(i) ∈ [ζrightmin − 0.1ζdescentwidth , ζrightmin + 3] (6.33)

In the case of the vfθ trace, the criterion is

∃(i).G(i) ∈ [ζmax − 0.1ζascentwidth , ζmax + 0.1ζdescentwidth ]

∧∃(i).G(i) ∈ [ζleftmin , ζleftmin + 0.1ζascentwidth ] (6.34)

∧∃(i).G(i) ∈ [ζrightmin − 0.1ζdescentwidth , ζrightmin ]
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(d) False alarms
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(e) Edit point matches

vfM

17

vfσ2
M

20

vfθ

12141

104

33 30

0

..........................................................................................................................................................................................
.............

..........
........
........
.......
.......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
.......
.......
........

.........
..........

..............
........................................................................................................................................................................................

...........................................................................................................................................................................................
.............

..........
........
........
.......
.......
......
......
......
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
.......
.......
........

.........
...........

...............
..................................................................................................................................................................................... ...........................................................................................................................................................................................

.............
..........
........
........
.......
.......
......
......
......
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
.......
.......
........

.........
...........

...............
.....................................................................................................................................................................................

(f) False alarms

Figure 6.19: Overlap in edit point detection and false alarms for vector field traces, over the

greenDancer, maleDancer, and ballet2 sequences.
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Figure 6.20: Peak-relative locations of edit points in the vector field traces, for the greenDancer,

maleDancer, and ballet2 sequences combined.

Figures 6.20 (e)-(g) show that in the case of the vfσ2
M

, vfσ2
x
, and vfσ2

y
traces, the probability of

the peak-relative location of an edit point is quite well correlated with increasing distance from

the peak maximum. For these traces, then, a peak that contains an edit point anywhere within

its support is considered desired, and edit-point detection biased away from the maxima of these

peaks in the section on Combined Edit Point Detection, below. Classification performance is

shown in table 6.7. The highest performance is achieved by the vector field variance traces.
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vfM 0.28539 vfx 0.22364 vfy 0.25411

vfσ2
M

0.58606 vfσ2
x

0.55983 vfσ2
y

0.57971

vfθ 0.3557

Table 6.6: Prior probabilities of a peak’s corresponding to an edit point for the vector field

traces.

Characteristics ROC Area

0001 0.681342

0010 0.586037

0100 0.581115

1000 0.66962

1011 0.771903

0001 0.681342

(a) vfM

Characteristics ROC Area

0001 0.675285

0010 0.58881

0100 0.606326

1000 0.592294

0111 0.705253

0001 0.675285

(b) vfx

Characteristics ROC Area

0001 0.67234

0010 0.598405

0100 0.603507

1000 0.584796

1111 0.698717

0001 0.67234

(c) vfy

Characteristics ROC Area

0001 0.635128

0010 0.64456

0100 0.590275

1000 0.544593

1011 0.721124

0010 0.64456

(d) vfθ

Characteristics ROC Area

0001 0.793779

0010 0.651292

0100 0.745439

1000 0.613479

1111 0.853028

0001 0.793779

(e) vfσ2

M

Characteristics ROC Area

0001 0.765647

0010 0.641531

0100 0.712049

1000 0.60677

1111 0.823331

0001 0.765647

(f) vfσ2
x

Characteristics ROC Area

0001 0.765816

0010 0.651764

0100 0.683894

1000 0.613533

1111 0.807915

0001 0.765816

(g) vfσ2
y

Table 6.7: Peak Classification Performance: Area Under ROC Curve
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6.5 Motion Blur and Edit Point Identification

A prominent feature of many images corresponding to edit points is that they exhibit much less

motion blur than images depicting dance phrases in execution. Assessing the level of motion

blur in each frame, then, could be a powerful aid to the detection of edit points. The frames in

figure 6.22 illustrate this phenomenon; the dancer’s foot is most sharply resolved in the middle

image, which is suitable as an edit point separating the leg’s ascent from its descent.

Assessing images for blur has been an active area research in digital image processing for

some decades. Most work focuses on blur due to defects in the imaging system, such as when

the objective lens is out of focus [326], or on blur arising due to camera motion [62,234]. Fewer

systems targeting motion blur have been described.

For this work, relatively simplistic approaches involving the AC energy of the Fourier spec-

trum have been employed. The specific approach has to be tailored to the sequence in question,

depending on the process chain involved in its preparation.

6.5.1 Motion blur in interlaced footage

Video cameras typically produce interlaced footage. Each frame of the video is in fact two

separate half-height fields, interlaced so that one field supplies the even lines, and the other the

odd lines. Exposure times for the individual fields are typically about 1/250 to 1/1000 of a

second, and so motion blur within each field is rare. However, the fields are sampled at twice

the frame rate, so the fields in one frame are separated by 1/50 or 1/60 of a second. Fast motion

is then clearly visible in the disparity between fields, introducing interlacing artifacts. When the

video is played back, these interlacing artifacts are perceived as a kind of motion blur.

Detecting stop frames in interlaced footage, then, can be approached by seeking frames in

which the effects of interlacing are locally least visible. As the fields are interleaved line-by-

line, the disparities due to interlacing are perceived as lines in the image at very high vertical

frequencies. Figure 6.21 shows how the Fourier energy is distributed over horizontal (figure 6.21

(a)) and vertical (figure 6.21 (b)) frequencies, for three frames. For all three frames, high energy

in vertical frequencies near π radians / sample is apparent, corresponding to interlacing artifacts.

Furthermore, this energy is least for the desired middle frame, corresponding to the green trace.

To quantify this effect, the relative energy at high vertical frequencies is defined. This is

given by

freqinterlace(n) =

∑

x=0...π
2
;y= π

2
...π FEn(x, y)

∑

x=0...π
;
y=0...π FEn(x, y)

(6.35)

where FEn(x, y) is the Fourier spectrum magnitude at spatial frequency (x, y) for frame n.
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Figure 6.21: Sharp frame detection for interlaced footage. Frames 152, 154, and 156 from the

ballet2 sequence are shown at top; frame 154 is the desired sharpest image.
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6.5.2 Motion blur in non-interlaced footage

Film cameras operate at 24 frames per second, and typically use exposure times of 1/50 to 1/200.

This can be sufficiently slow for motion blur to be visible in the resulting frames. However, when

material shot on film is to converted to NTSC video, temporal resampling from 24 fps to 60

fields per second is necessary. The resampling scheme used is called 3:2 pulldown [164], and

it results in video in which interlacing artifacts are introduced to certain frames. In straight

3:2 pulldown conversion, two out of every five frames will be interlaced. However, variations

in the transfer and encoding scheme can mean that this pattern is not always observed. The

greenDancer and maleDancer sequences, for example, show evidence of having been converted

from film, where slight interlacing artifacts and higher noise values are apparent in every third

frame.

The approach adopted is to assess the image sharpness by examining the energy at non-zero

spatial frequencies in the Fourier spectrum of each frame. This results in the freqsharp trace,

found by

freqsharp(n) =
∑

x 6=0∨y 6=0

FEn(x, y) (6.36)

However, some smoothing of this trace may be necessary depending on the production chain of

the video in question. An approach appropriate to the greenDancer and maleDancer sequences

is illustrated here. Figure 6.22 (a) shows the energy of the Fourier spectrum of three frames,

summed along columns. This shows how the energy is distributed among horizontal frequencies;

the green trace corresponds to the middle frame (containing the desired edit point), and the

peak at π/8 can be assumed to correspond to the increased resolution due to the stop in the

region of the shoe. Note that the red trace is slightly higher than the other two at all frequencies.

Figure 6.22 (b) shows how Fourier energy is distributed over vertical frequencies. The peaks at π

in the vertical energy spectrum common to all three traces suggest that some interlacing artifacts

are still present. Again, the red trace has more energy at all frequencies, but particularly at

the Nyquist rate, characteristic of interlacing artifacts. In this sequence, every third frame has

markedly higher high frequency energy, resulting in the noise pattern shown in figure 6.22 (c).

Every third value is a spike, including frame 292. To discount the effects of this phenomenon,

the affected values are replaced with the average value of their two neighbours. The underlying

trend in the AC energy of the video frames is then visible. The edit point shown is at frame

290, and this is the highest value in the smoothed trace—in other words, this frame is detected

as a notably sharp image.

6.5.3 Extrema detection in the motion blur traces

To assess the correspondence of edit points to extrema in the motion blur traces, edit point

detection was assessed for each trace. The maxima of the freqsharp trace are used as candidate

edit points, while for the freqinterlace trace the minima are used. Minima detection was assessed
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Figure 6.22: Sharp frame detection for 3:2 pulldown footage. Frames 288, 290, and 292 from

the greenDancer sequence are shown at top; frame 290 is the desired sharpest image.
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(a) Edit point location relative to peaks in the

freqinterlace trace, for the ballet2 sequence
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(b) Edit point location relative to peaks in the freqsharp

trace, for the greenDancer and maleDancer sequences

combined.

Figure 6.23: Edit point location relative to peaks in the motion blur traces.

for each of the eight smoothing schemes described; the results for edit point detection using

these minima are presented in appendix C.3.1. For the freqsharp trace, no smoothing gives the

best performance. Savitzky-Golay filtering is applied to the freqinterlace trace. In both cases,

recall is good but precision is poor, at 0.24 and 0.19 for the two traces.

6.5.4 Peaks in the motion blur traces

As in the case of the other traces, the freqinterlace and freqsharp traces can be parsed into peaks

and these peaks used to isolate trace features proposed for edit points. Edit points are expected

to occur at minima in the case of the freqinterlace trace and maxima in the case of the freqsharp

trace. Figure 6.23 shows that these are the most probable peak-relative locations for edit points

in these traces.

To establish the ground truth for purposes of peak classification, a peak ζ(p) in the freqinterlace

trace is designated as desired if

∃(i).G(i) ∈ [ζmax + 0.9ζdescentwidth , ζrightmin + 3] (6.37)

For the freqsharp trace, a peak is desired if

∃(i).G(i) ∈ [ζmax − 0.1ζascentwidth , ζmax + 0.1ζdescentwidth ] (6.38)

6.5.5 Classifying motion blur peaks

Classification of the peaks in the motion blur traces is undertaken using the same four peak

characteristics described previously. The distributions found are shown in C.3.2. The prior
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Characteristics ROC Area

00 0001 0.609678

0010 0.520234

0100 0.615032

1000 0.367559

1111 0.669115

0101 0.615032

(a) freqinterlace

Characteristics ROC Area

0001 0.576721

0010 0.532287

0100 0.545496

1000 0.598621

1000 0.598621

1000 0.598621

(b) freqsharp

Table 6.8: Peak classification performance for the motion blur traces.

probability that a peak in the freqsharp trace corresponds to an edit point was found to be 0.076.

For the freqinterlace trace, the prior probability was 0.3319.

Table 6.8 presents the results of peak classification performance for the freqinterlace and

freqsharp traces. Again, it is apparent that classifying peaks in these traces is a challenging

undertaking. The motion blur traces are incorporated in the combined method approach to edit

point detection, described below.

6.6 The Video Soundtrack and Edit Point Identification

The audio track of videos can be a rich source of information regarding edit points in the video.

For example, in video of dance accompanied by music, beat locations in the music could be

expected to be temporally close to dance phrase transitions. Also, many percussive motions

give rise to a simultaneous sound—the stamp of a dancer’s foot, for example.

The audio analysis undertaken here is a simple characterisation of the audio energy associated

with each frame. This is found by the mean of the samples associated with each frame after

full-wave rectification of the waveform. Let w(i) represent the original audio signal. The number

of audio samples to each video frame is designated by F = fs

Fr
, the ratio of the audio sampling

frequency fs to the video framerate Fr. The audio energy trace, audio, is then found by

audio(n) =
1

F

∑

i=nF ...(n+1)F

|w(i)| (6.39)

It is noted that modelling perceptual loudness of a waveform requires more complicated

techniques than the approach described here [224]. For videos with musical accompaniment,

beat detection could also be applied to the soundtrack [269]. The audio energy approach used

here is found to assist in edit point detection in the videos assessed, and has the advantage of

being applicable to videos with or without music.

Figure 6.24 shows an extract of the audio energy trace for the greenDancer sequence. The

three edit points in these frames are all associated with peaks in the audio trace.
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Characteristics ROC Area

0001 0.612166

0010 0.657108

0100 0.650587

1000 0.632159

1111 0.754281

0010 0.657108

Table 6.9: Audio peak classification performance

6.6.1 Maxima in the audio trace

The optimal smoothing scheme for the audio trace was determined by evaluating edit point

detection using all maxima in the smoothed signal. The results of this assessment are shown

in appendix C.4.1. The best-performing smoothing scheme uses Savitzky-Golay filtering and

relative difference gating.

6.6.2 Peaks in the audio trace

The audio energy trace is smoothed and parsed into peaks in the same way as the previously

described traces. Figure 6.25 shows how peak-relative locations are distributed amongst edit

points.

The ground truth criterion used for audio is that a peak is desired if

∃(i).G(i) ∈ [ζmax − 0.1ζascentwidth , ζmax + 0.1ζdescentwidth ] (6.40)

is suggested. In other words, peaks for which the peak maximum is close to an edit point are

designated as desired.

6.6.3 Peak classification in the audio trace

The prior probability that a peak in the audio trace is desired was found to be 0.104. The

same four peak characteristics used in previous traces are used for peak classification. The

distributions found are presented in appendix C.4.2. Classification performance is shown in

table 6.9. The best classifier uses all four characteristics, achieving an area under the ROC

curve of 0.75.

6.7 Combined-Method Edit Point Identification

Thus far, this chapter has presented a number of disparate methods for detecting edit points.

It has been established that none of these methods in isolation results in entirely satisfactory
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Figure 6.24: The audio energy signal over 100 frames in the greenDancer sequence. Ground-

truth edit points are indicated by vertical red lines.
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Figure 6.25: Peak-relative locations of edit points in the audio energy trace
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Trace No. Features WR Wρ WRρ

motion 0 1101 0.806 0.507 0.409

bbminx 1 1111 0.777 0.519 0.403

bbmaxx 2 1011 0.694 0.428 0.297

bbminy 3 1011 0.734 0.518 0.381

bbmaxy 4 1011 0.689 0.494 0.341

bbwidth 5 1111 0.706 0.438 0.309

bbheight 6 1111 0.685 0.420 0.279

vfM 7 1011 0.771 0.285 0.220

Trace No. Features WR Wρ WRρ

vfx 8 1111 0.705 0.234 0.158

vfy 9 1111 0.698 0.254 0.178

vfθ 10 1011 0.721 356 0.256

vfσ2
M

11 1111 0.853 0.586 0.500

vfσ2
x

12 0111 0.823 0.560 0.461

vfσ2
y

13 1111 0.807 0.580 0.468

freqinterlace 13 1111 0.669 0.331 0.222

freqsharp 13 1000 0.598 0.076 0.046

audio 13 1011 0.75 0.105 0.078

Table 6.10: Peak features for classification, area under classifier ROC (WR), and prior probability

of a peak’s being desired (Wρ), for each of the 17 traces. WRρ is the product of WR and Wρ.

edit point detection. In this section, it is investigated whether these methods can be combined

so as to obtain better overall performance.

The preceding material has introduced a set of traces, T , comprising the motion trace, six

bounding box traces, seven traces from the motion vectors, a motion blur trace (either freqsharp ,

or freqinterlace , depending on the video format), and the audio trace. Each trace t is decomposed

into a set of peaks Pt, and it has been demonstrated that in each trace, edit point location is in

some degree correlated with peak location—principally, whether edit points are more likely at

peak minima or peak maxima in that trace.

In this section, a scheme for converting the results of this trace analysis to a probability

signal for edit points is described. A trace t(n) is converted to a signal EPt(n) which reflects the

probability that frame n corresponds to an edit point. These individual probability signals can

then be combined to generate an overall probability signal EP (n), which incorporates analysis

of all the traces described for edit point detection.

6.7.1 Converting Traces to Edit Point Signals

The first stage is the transformation of each trace into a signal reflecting the probability of an

edit point at each frame given that trace alone. To achieve this, the traces are parsed into peaks,

and each peak is classified as desired or undesired. A kernel Kt(n, P ) is then added to the edit

point probability signal, centred on the appropriate peak feature location—for example, at the

peak minimum—and scaled according to the Ct(p), the confidence of the peak classification.

Thus EPt is found by

EPt(n) ∝
∑

p∈Pt

Ct(p)Kt(n, p) (6.41)

The form of the kernel Kt(n, p) is different for each trace t.

The confidence measure was introduced in 6.2.6.1, and is based on the result of classification
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of the peak p using the classification system developed in this chapter. For each trace, the

combination of peak characteristics yielding the best classification performance, as measured

by the area under the R.O.C. curve, has been identified. These combinations are shown in

table 6.10. The confidence measure is based on the difference between the class energies

Ct(p) = exp(Et(p|ζ(p) = 0) − Et(p|ζ(p) = 1)) (6.42)

where Et(p|ζ(p) = 0) is the negative logarithm of the likelihood that peak p is undesired, as

described in 6.2.6. Ct(p) is greater than one if P (p|ζ(p) = 0) < P (p|ζ(p) = 1), and less than

one otherwise. Thus the kernel is amplified or attenuated according to the classification result

of the peak at hand.

Where a peak characteristic has a value close to the limit of the range, it is found that the

ratio of the likelihood distributions can become very high. This results in a very high confidence

measure, amplifying the kernel value by several hundred times in some cases. To avoid this

effect, values of Ct can be limited to be less than some maximum. The choice of a suitable limit

is described in the section on assessment later in this chapter.

6.7.1.1 Edit point probability using the motion trace

For the motion trace, edit points are expected near peak minima. The joint distribution

P (n, ζdescent (n)
ζdescentwidth (n)) over edit point location relative to the peak minimum, and peak steepness,

was presented in figure 6.12. The kernel for a peak in the motion trace ζ(p) is then

K ′
0(n, p) ∝P (n− ζrightmin(p)|ζdescent (p), ζdescentwidth(p)) (6.43)

K0(n, p) =
K ′

0(n, p)

maxn′ K ′
0(n

′, p)
(6.44)

The kernel is normalised to have a peak value of 1.

Figure 6.26 illustrates how EP (n) is calculated based on the motion trace alone. Figure 6.26

(a) presents the motion trace over a range of frames in the greenDancer sequence; figure 6.26

(b) then shows how EP (n) is made up of kernels with their modes at the peak minima. The left

tail of each kernel is longer for shallower peak descents. The figure also illustrates how scaling

each kernel by the classification confidence improves the separation between false peak minima

and desired peak minima for the edit points at frames 203, 240, and 312—although the peak

classification has a detrimental effect as regards detection of the stops at frames 264 and 290.

While not all ground truth edit points are at peaks in the EP (n) signal, a strong correlation is

evident.
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(a) The motion trace over 200 frames of the greenDancer sequence. Peak maxima are shown

by dashed green lines; peak minima are shown by dotted green lines. Red lines show the

location of edit points in the ground truth.
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(b) The edit point probability signal generated from the motion trace. Red lines show the

location of edit points n the ground truth.

Figure 6.26: Edit point probability analysis using the motion trace
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6.7.1.2 Edit point probability using the bounding box traces

In the six bounding box traces, edit points are expected near the extrema of the peak traces.

The kernels are made up of three functions, based on the non-normalised Gaussian:

G(µ, σ2, n) = exp

(

− 1

2σ2
(n− µ)2

)

(6.45)

right half-Gaussian (non-normalised):

Gr(µ, σ2, n) =

{

exp
(
− 1

2σ2 (n− µ)2
)
, x ≥ 0

0 otherwise
(6.46)

and left half-Gaussian (non-normalised):

Gl(µ, σ2, n) =

{

exp
(
− 1

2σ2 (n− µ)2
)
, x ≤ 0

0 otherwise
(6.47)

The Gaussians are not normalised as it is not desired that the confidence should increase for

narrower variance. In this formulation, the kernel maximum in all cases is one, as for the motion

trace kernel above.

The overall kernel for the bounding box traces is then

K1−6(n, p) =
1

3
Gr(ζleftmin(p),

ζascentwidth

10
, n)

+
1

3
G(ζmax (p),

ζascentwidth + ζdescentwidth

20
, n) (6.48)

+
1

3
Gl(ζrightmin(p),

ζdescentwidth

10
, n)

The width of the kernel increases with increasing peak width, corresponding to the ground truth

criterion used in peak classification. Figure 6.27 illustrates how the edit point probability signal

is derived from the bbwidth trace. It can be seen that this trace has assigned a high probability

to the ground truth edit point at frame 185, which was missed in the analysis of the motion

trace.

6.7.1.3 Edit point probability using the vector field traces

Similar kernels are employed for the vector field traces. For the vfM , vfx , and vfy traces, edit

points are expected near the peak minima, and so the kernel used is the left half-Gaussian

K7−9(n, p) = Gl(ζrightmin(p),
ζdescentwidth

10
, n) (6.49)

where again the kernel width increases with the width of the peak. In the case of the vfθ trace,

edit points are correlated with changepoints, i.e. minima and maxima, and so the same kernel

is used as for the bounding box trace—K10(n, p) = K1(n, p). In the case of the vector field
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(a) The bbwidth trace over 200 frames of the greenDancer sequence. Peak maxima are shown

by dashed green lines; peak minima are shown by dotted green lines. Red lines show the

location of edit points in the ground truth.
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(b) Edit point probability signal generated from the bbwidth trace. Ground truth edit points

are shown by red lines.

Figure 6.27: Edit point probability analysis using the bbwidth trace
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variance traces, vfσ2
M

, vfσ2
x
, and vfσ2

y
, edit point location is to be biased away from the peak

maximum, reflecting the cup shape visible in the distributions. The kernel used is then:

K11−13(n, p) =
1

2
Gr(ζleftmin(p),

ζascentwidth

2
, n)

+
1

2
Gl(ζrightmin(p),

ζdescentwidth

2
, n)

Figure 6.28 shows the edit point probability process in the case of the vfσ2
M

trace. Here many

of the resulting peaks are slightly after ground truth edit points. The edit point at frame 301

has been accorded a small probability of detection, which could aid in detection of this frame in

combination with the other traces.

6.7.1.4 Edit point probability using the motion blur traces

In the case of the traces reflecting motion blur, edit points are correlated with minima in the

freqinterlace trace and with maxima in the freqsharp trace. For interlaced footage, then, the kernel

used is the left half-Gaussian

K14i
(n, p) = Gl(ζrightmin(p),

ζdescentwidth

10
, n) (6.50)

and for 3:2 pulldown material, a Gaussian centred on the peak maximum is used

K14s(n, p) = G(ζmax (p),
ζascentwidth + ζdescentwidth

20
, 20) (6.51)

Figure 6.29 shows the result of this analysis for a segment of the greenDancer sequence. This

sequence has been derived from video footage via 3:2 pulldown, and so motion blur is assessed

using the freqsharp trace in this case. Of note here is the high probability assigned to the edit

point at frame 290, which has not featured in the previously illustrated traces.

6.7.1.5 Edit point probability using the audio trace

For the audio trace, edit points are expected near the peak maximum. The kernel employed is

the same as that used for the freqsharp trace, so K13 = K14s . Figure 6.30 shows the edit point

probability signal derived from the audio trace. While the edit points at 203, 240, and 290

are effectively detected, the high peak in probability at frame 329 is does not correspond to a

defensible edit point.

6.7.2 Combining Probability Traces

To form a combined probability signal for edit points at frame n, the weighted mean of the

individual EPt signals is then found using

EP (n) =

∑

t∈T WtEPt(n)
∑

t∈T Wt
(6.52)

Maxima in this combined signal then correspond to detected edit points using all the traces

described.
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(a) The vfσ2

M
trace over 200 frames of the greenDancer sequence. Peak maxima are shown

by dashed green lines; peak minima are shown by dotted green lines. Red lines show the

location of edit points in the ground truth.
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(b) Edit point probability signal generated from the vfσ2

M
trace. Vertical red lines show

ground truth edit points.

Figure 6.28: Edit point probability analysis using the vfσ2
M

trace
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(a) The freqsharp trace over 200 frames of the greenDancer sequence. Peak maxima are shown

by dashed green lines; peak minima are shown by dotted green lines. Red lines show the

location of edit points in the ground truth.
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(b) Edit point probability generated by the freqsharp trace. Vertical red lines show ground

truth edit points.

Figure 6.29: Edit point probability analysis using the freqsharp trace
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(a) The audio trace over 200 frames of the greenDancer sequence. Peak maxima are shown

by dashed green lines; peak minima are shown by dotted green lines. Red lines show the

location of edit points in the ground truth.
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(b) Edit point probability signal generated from the audio trace. Vertical red lines show

the location of ground truth edit points.

Figure 6.30: Edit point probability analysis using the audio trace



6.7. Combined-Method Edit Point Identification 177

6.7.2.1 Peaks in the combined probability signal

The locations of peak maxima in an edit point probability signal are taken as the identified edit

points. The peak maxima are identified through parsing the signals into successive peaks in the

same way as in the traces. Edit point signals EPt(n) arising from a single trace are parsed into

peaks without any smoothing. This is because in these cases, the maxima in EPt correspond

directly to the best estimate for the location of an edit point, and so absolute fidelity in the

identified peak maxima to maxima in the signal is required. For the combined EP (n) signal,

Savitzky-Golay filtering is applied prior to parsing into peaks. This ensures that adjacent peaks

in different traces are combined to give a smooth final signal.

6.7.2.2 Weights for probability signals

A number of possibilities for the choice of the weights for each choice can be considered. The

first possibility is not to use any weighting, effectively assigning each trace a weight of 1. These

weights are designated W1(t).

Each trace could be weighted according to how reliably the peaks in the trace can be classified.

For this scheme, the weights correspond to the area under the ROC obtained in classifier training.

The intention is that the more reliably classified traces should have more influence on the derived

edit point probability. These weights are designated by WR(t).

A further possibility is to use the prior probabilities for each trace as the weights. This

corresponds to the intuition that the traces are weighted by how likely it is that a peak in the

trace should correspond to an edit point. The weights are denoted Wρ(t).

These latter two weighting schemes can be combined to form weights WRρ(t) = WR(t)Wρ(t).

These weights take into account both the prior probability that a peak corresponds to an edit

point, and the reliability of peak classification in the various traces.

The values of WR, Wρ, and WRρ for each trace are shown in table 6.10.

Irrespective of the weighting scheme used, the weights should also take into account the

mutual information between related traces. For example, it has been established that there is

considerable overlap in edit point detection between the bounding box traces bbminx , bbmaxx ,

and bbwidth . To compensate for this effect, the weights for the bounding box traces are divided

by 3. Similarly, the weights for the vector field traces are also divided by 3, with the exception

of the weight for the vfθ trace.

Figure 6.31 shows the distribution of peak-relative locations for edit points in the ground

truth against peaks in the edit point probability traces generated using each of the three weight-

ing schemes described. The ground truth data over the greenDancer, maleDancer, and ballet2

sequences was combined to generate this figure. Using WR, 18.27% of ground truth edit points

are located exactly at peak maxima, compared to 15.9% and 15.6% for WRρ and Wρ respectively.

Alternatively, the trace weights can be chosen based on a subjective assignment of ‘aesthetic

effect’ to each trace. Here, an operator analysing a particular video could assign weights to
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Figure 6.31: Location of 301 ground truth edit points from the greenDancer, maleDancer, and

ballet2 sequences, relative to peaks in the edit points probability signal. The number of peaks

found in the probability signal is also given.

the individual traces manually corresponding to how important each effect is to the intended

application. For example, for a flowing dance a change in vector direction would be assigned a

high weight, whereas for more staccato dancing the motion and freqsharp traces could be given

the largest weights. The effects of different trace weightings on edit point selection are illustrated

on the accompanying DVD.
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ω greenDancer maleDancer ballet2

21 3.83 2.08 0.67

22 2.42 2.08 0.75

23 3.75 1.92 0.75

24 2.33 2.67 1.17

25 3.42 2.67 1.25

26 3.42 2.75 1.67

27 3.42 2.67 2.33

28 3.50 2.67 2.42

29 3.50 1.92 2.50

210 3.50 1.92 2.67

Table 6.11: Detection performance for the top twelve edit points for various limits on Ct(p).

6.7.3 Assessment

6.7.3.1 Limiting kernel amplification

It was described above how the probabilistic edit point signal is found by adding together

kernels, and how these kernels are amplified by the peak classification confidence Ctp. Where

peak feature values are at an extreme of the range, very high Ct(p) values are generated, and it

is desirable to limit these values to some maximum ω. Table 6.11 shows how different values for

this limit affect performance in edit point detection. The measure used is

1

12

∑

i∈1...12

min
n

|epi − G(n)| (6.53)

Here epi is the peak in EP (n) having ith highest value. Thus the value of ω chosen is that

which minimises the mean distance between the top twelve detected edit points and edit points

in the ground truth. The value of 22 is chosen as achieving the best compromise over the three

training sequences.

6.7.3.2 Numerical Assessment

Not all peaks in the EP (n) signal will correspond to edit points. Thus, to extract a set of edit

points from this signal, a threshold is chosen. Only peak maxima having values greater than

this threshold are taken as candidate edit points. The set of estimated edit points is thus

ep = {n : ∃p.ζmax (p) == n ∧ EP (n) > ÊP } (6.54)

where ÊP is the threshold, and ζmax (p) is the location of the maximal point of the pth peak in

EP (n).
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ÊP #H #FA #M P R MPR MDmedian MDmean MDvar

0.00 76 157 3 0.33 0.96 0.64 0.5 0.34 6.01

0.50 75 149 4 0.33 0.95 0.64 1 0.39 5.94

1.00 69 95 10 0.42 0.87 0.65 1 0.57 6.07

1.50 56 39 23 0.59 0.71 0.65 1 0.68 6.26

2.00 35 13 43 0.73 0.44 0.59 0 0.66 6.11

2.50 15 0 64 1.00 0.19 0.59 0 0.27 4.50

3.00 4 0 75 1.00 0.05 0.53 0 0.50 6.33

3.50 1 0 78 1.00 0.01 0.51 -2 -2.00 0.00

4.00 1 0 78 1.00 0.01 0.51 -2 -2.00 0.00

4.50 1 0 78 1.00 0.01 0.51 -2 -2.00 0.00

5.00 1 0 78 1.00 0.01 0.51 -2 -2.00 0.00

Table 6.12: Edit point detection using EP (n) in the greenDancer sequence.

Tables 6.12, 6.13, and 6.14 show the performance of edit point detection for various values

of ÊP in the three training sequences. The optimal value for ÊP is different for each of these

sequences.

These results can be compared to 6.1, which described edit point detection performance using

minima in the motion trace alone. Performance is considerably improved on the maleDancer

sequence, where the maximum MPR score rises from 0.66 to 0.77. On the other two training

sequences, performance is about the same. This suggests that the motion trace is the most

informative of the various traces considered. However, the combined method for edit point

detection offers advantages in that the detected edit points can be ranked (by their EP (n) value).

Higher values of EP (n) increase the precision of the set of detected edit points considerably.

Furthermore, this ranking corresponds quite well to the relative significance, or visual strength,

of the edit point. Lastly, with the combined method, the weights of the individual traces can

be interactively adjusted to match the desired aesthetic criteria, or the characteristics of the

sequence at hand. This is described in more detail in the next chapter.

6.7.3.3 Visual Assessment

Figures 6.32 and 6.33 show the twelve candidate edit points with the highest EP (n) values in

the greenDancer and ballet2 sequences. The EP (n) value and distance to the nearest ground

truth edit point are shown underneath each frame.

These sequences were used in building the peak classification distributions, and so good

performance is expected. This is achieved, in that all the selected edit points depict striking

poses in the dance, and are detected very near ground truth edit points.

Figure 6.34 shows the twelve highest-scoring edit points detected in the maleDancer2 se-
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(a) 1537 (5.09, 2) (b) 578 (3.50, 0) (c) 689 (3.28, 4) (d) 439 (3.20, 0)

(e) 1406 (2.99, 3) (f) 773 (2.95, 1) (g) 528 (2.92, 1) (h) 201 (2.72, 2)

(i) 289 (2.69, 1) (j) 1443 (2.69, 1) (k) 849 (2.60, 0) (l) 823 (2.56, 1)

Figure 6.32: The top twelve edit points obtained from the greenDancer sequence. For each

frame, the distance to the nearest ground truth edit point is shown in parentheses.
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ÊP #H #FA #M P R MPR MDmedian MDmean MDvar

0.00 98 145 1 0.40 0.95 0.68 1 0.87 3.42

0.50 98 142 1 0.41 0.95 0.68 1 0.87 3.42

1.00 98 126 1 0.44 0.95 0.69 1 0.87 3.42

1.50 97 102 2 0.49 0.94 0.71 1 0.88 3.44

2.00 96 78 3 0.55 0.93 0.74 1 0.98 3.18

2.50 90 53 8 0.63 0.87 0.75 1 0.91 3.32

3.00 83 29 15 0.74 0.81 0.77 1 0.95 3.41

3.50 75 18 22 0.81 0.73 0.77 1 0.97 3.08

4.00 67 12 30 0.85 0.65 0.75 1 1.00 3.21

4.50 55 6 42 0.90 0.53 0.72 1 1.07 3.36

5.00 42 3 59 0.93 0.41 0.67 1 1.07 3.34

5.50 32 2 70 0.94 0.31 0.63 1.5 1.25 3.29

6.00 21 0 81 1.00 0.20 0.60 1 0.86 3.93

6.50 13 0 89 1.00 0.13 0.56 0 0.92 3.91

7.00 6 0 96 1.00 0.06 0.53 1.5 1.00 5.20

7.50 3 0 100 1.00 0.03 0.51 -1 -1.00 1.00

8.00 3 0 100 1.00 0.03 0.51 -1 -1.00 1.00

8.50 2 0 101 1.00 0.02 0.51 -1.5 -1.50 0.50

9.00 1 0 102 1.00 0.01 0.50 -2 -2.00 0.00

Table 6.13: Edit point detection using EP (n) in the maleDancer sequence.

quence. This material is from the same source as the maleDancer sequence, but was not used

in building the peak classification distributions. Similarly, figure 6.35 shows the top twelve edit

points detected in the ballet1 sequence, which is from the same source as the ballet2 sequence

but was not used in building the classification distributions.

Performance is good on this sequence; all selected edit points depict striking poses, with the

possible exception of the final image, frame 3604 in figure 6.34. It is notable that the ballet1

sequence shows a group of dancers, while ballet2 shows a single dancer. The good performance

achieved on the ballet1 sequence suggests that the techniques applied generalise to footage

depicting multiple dancers.

The greenMale material depicts dance that begins with a single man, who is joined by a

woman towards the end of the sequence. This footage was not used in building the distributions

for peak classification. Figure 6.36 shows the top twelve edit points detected in this sequence.

Performance on this sequence is again good. The highest-scoring edit point, at frame 2096,

marks the end of the dance and is perhaps the most significant edit point in the sequence.

Frame 2110 is a essentially a duplication of this edit point, selected due to the motion of the

dress after the dancers stop.
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ÊP #H #FA #M P R MPR MDmedian MDmean MDvar

0.00 113 79 3 0.59 0.95 0.77 0 -0.06 3.34

0.50 113 79 3 0.59 0.95 0.77 0 -0.06 3.34

1.00 113 79 3 0.59 0.95 0.77 0 -0.06 3.34

1.50 113 76 3 0.60 0.95 0.77 0 -0.06 3.34

2.00 111 67 4 0.62 0.93 0.78 0 -0.04 3.51

2.50 105 54 10 0.66 0.88 0.77 0 -0.05 3.53

3.00 100 45 14 0.69 0.84 0.76 0 -0.07 3.60

3.50 95 29 18 0.77 0.80 0.78 0 -0.17 3.63

4.00 81 17 32 0.83 0.68 0.75 0 0.01 3.39

4.50 68 10 45 0.87 0.57 0.72 0 0.09 3.75

5.00 54 8 61 0.87 0.45 0.66 0 0.04 2.75

5.50 41 6 75 0.87 0.34 0.61 0 0.00 2.65

6.00 33 2 83 0.94 0.28 0.61 0 -0.06 2.81

6.50 22 0 95 1.00 0.18 0.59 0 -0.14 2.41

7.00 12 0 107 1.00 0.10 0.55 0 -0.08 1.36

7.50 9 0 110 1.00 0.08 0.54 0 -0.56 0.53

8.00 8 0 111 1.00 0.07 0.53 0 -0.50 0.57

8.50 6 0 113 1.00 0.05 0.53 0 -0.50 0.70

9.00 5 0 114 1.00 0.04 0.52 0 -0.20 0.20

9.50 4 0 115 1.00 0.03 0.52 0 0.00 0.00

10.00 2 0 117 1.00 0.02 0.51 0 0.00 0.00

10.50 1 0 118 1.00 0.01 0.50 0 0.00 0.00

11.00 1 0 118 1.00 0.01 0.50 0 0.00 0.00

Table 6.14: Edit point detection using EP (n) in the ballet2 sequence.

6.8 Conclusion

This chapter has described a number of approaches for describing aspects of foreground motion

in video, particularly dance video. Detecting discontinuities in the foreground motion can be

achieved by locating extrema in these traces. Significant discontinuities in the foreground motion

are shown to correspond to edit points in dance video. The edit point detection mechanism is

shown to generate convincing results.

Numerically, the performance attained by the peak classification approach is not much

greater than that attained by simply taking all minima in the motion trace. However, hav-

ing a measure of edit point strength, such as that provided by probabilistic, combined-trace edit

point detection, is useful for a number of applications. Several such applications are described

in chapter 8.
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(a) 1371 (4.22, 0) (b) 1341 (3.85, 0) (c) 1173 (3.69, 0) (d) 1271 (3.57, 0)

(e) 1286 (3.42, 1) (f) 1183 (3.20, 2) (g) 897 (3.07, 0) (h) 347 (3.01, 1)

(i) 139 (2.79, 1) (j) 1222 (2.77, 2) (k) 1484 (2.67, 0) (l) 737 (2.63, 2)

Figure 6.33: The top twelve edit points obtained from the ballet2 sequence. For each frame, the

distance to the nearest ground truth edit point is shown in parentheses.

Various refinements to the methods described here are possible. Improvements to the motion

detection, global motion estimation, or local motion estimation methods used would assist in edit

point detection. The key area for future work is the peak classification system, and in particular

the method used to parse traces into peaks. In the system as described, minima in the traces are

determined using a heuristic method with fixed parameters (such as the Savitzky-Golay filter

order, and the size of the median filter). A probabilistic approach to minima detection could

result in improved performance for peak extraction and hence edit point detection.
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(a) 3294 (36.31, 0) (b) 3649 (31.37, 1) (c) 3481 (29.75, 2) (d) 3354 (27.95, 6)

(e) 3407 (26.38, 1) (f) 3471 (26.29, 0) (g) 3625 (24.22, 0) (h) 3549 (24.17, 3)

(i) 3571 (24.15, 1) (j) 3380 (23.51, 5) (k) 3438 (22.83, 2) (l) 3604 (22.73, 10)

Figure 6.34: The top twelve edit points obtained from the maleDancer2 sequence.
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(a) 238 (43.87, 1) (b) 296 (36.92, 0) (c) 209 (35.90, 0) (d) 326 (35.75, 0)

(e) 267 (34.71, 1) (f) 311 (34.19, 6) (g) 354 (33.13, 1) (h) 253 (28.25, 1)

(i) 368 (28.18, 0) (j) 341 (27.23, 2) (k) 194 (26.74, 4) (l) 384 (26.03, 0)

Figure 6.35: The top twelve edit points obtained from the ballet1 sequence.
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(a) 2096 (3.64, 0) (b) 1256 (3.29, 4) (c) 199 (3.10, 1) (d) 1810 (2.95, 0)

(e) 243 (2.76, 1) (f) 1785 (2.69, 0) (g) 2110 (2.67, 14) (h) 1859 (2.62, 0)

(i) 645 (2.54, 1) (j) 1648 (2.53, 3) (k) 188 (2.53, 2) (l) 700 (2.53, 0)

Figure 6.36: The top twelve edit points obtained from the greenMale sequence.

7
Segmentation For Edit Point Detection 1

The previous chapter considered methods for edit point identification based on information

characterising each entire frame of an image sequence. In many cases, the performance of these

methods is impaired because the motion of some regions of each frame is more informative

regarding edit points than others. The greenDancer sequence includes several typical examples,

such as where the motion of the arms is expressive of an edit point while the motion of the

clothing is not.

To improve on performance in these cases, an attempt to segment the video into its con-

stituent elements is undertaken. Characterising the motion of each segment individually should

then enable the edit point detection process to distinguish between the dancer’s clothing and

her limbs, for example, and then bias edit point detection to the more relevant regions.

The video segmentation problem was introduced in chapter 2. In outline, the segmentation

process involves assigning a label to each pixel in each frame of the video. The different label

values correspond to different segments in the frame, and the design aim is that these segments

should be meaningful. For the application described here, a Markov Random Field approach

using Iterated Conditional Modes (ICM) is employed to solve the resulting Maximum a posteriori

(MAP) problem.

This chapter continues with an overview of Markovian Random Field Segmentation as im-

1An account of the early stages of this work was described in “Exploiting temporal discontinuities for event

detection and manipulation in video streams” by Hugh Denman, Erika Doyle, Anil Kokaram, Daire Lennon,

Rozenn Dahyot and Ray Fuller, in MIR ’05: Proceedings of the 7th ACM SIGMM International Workshop on

Multimedia Information Retrieval, pages 183–192, New York, October 2005

188
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plemented here. Subsequent sections detail how colour and motion data are used to inform

the segmentation; how likely segmentation boundaries are determined via the ‘edge process’; a

means for assessing the confidence associated with a given motion vector; and how smoothness is

encouraged in the segmentation. The following sections describe how changes in the character of

the video are dealt with, be they changes in the motion of a segment or changes in the number

of segments required to model the sequence. The chapter ends with a discussion of how the

segmentation output is used to assist in edit point identification. Videos illustrating details and

results from this chapter are included on the DVD accompanying this thesis.

7.1 Markovian Random Field Segmentation

Segmentation is carried out using the image data, I, and the local motion vectors D at each

frame. The image space is divided into sites x, and each site is assigned a label L(x) ∈ L. Each

label has an associated model, describing the observed ‘behaviour’ at sites assigned this label in

terms of colour distribution, motion, and location within frame space.

In probabilistic terms, the problem of segmentation is then to find the most probable label

field L(x). However, a probability distribution over an entire labelfield has very high dimen-

sionality, typically in the many hundreds or thousands, and it is very difficult to analyse such

high-dimensional probability spaces. Therefore, the segmentation is calculated iteratively on a

site-by-site basis. This involves analysis of the probability distribution at each site L(x) indi-

vidually, given the label assignments at other sites L(−x) and the image and motion data I and

D:

P (L(x)|L(−x), I,D, θ) (7.1)

θ represents the model parameters for each label. Each site is assigned the label maximising 7.1,

i.e. the mode of the distribution. This technique for optimization in high-dimensionality spaces

is called ICM [325].

It can generally be assumed that the probability distribution over labels at a given site is

independent of label assignments at sites far away in the image space. This assumption is the

essence of Markov Random Field modelling, an approach that simplifies matters by assuming

that the probability distribution over labels at site x depends only on the labels assigned at

neighbouring sites, {L(x′)|x′ ∈ N (x)}:

P (L(x)|L(−x), I,D, θ) = P (L(x)|L(N (x)), I,D, θ) (7.2)

In this work the neighbourhood N (x) includes the eight neighbours of x found along the hori-

zontal, vertical, and diagonal directions:

N (x) =
{
x′ : x′ ∈

{
x + {−1, 0, 1}2

}
\x
}

(7.3)
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Analysis is further simplified by factoring the probability as follows:

P (L(x)|L(−x), I,D, θ)
︸ ︷︷ ︸

Posterior

∝ P (I,D|L(x), θ)
︸ ︷︷ ︸

Likelihood

P (L(x)|L(−x), θ)
︸ ︷︷ ︸

Smoothness Prior

(7.4)

The likelihood component measures how likely the data at the site is, given a particular label

assignment—i.e. how well the data accords with the model corresponding to that label. The

prior incorporates the intuition that neighbouring sites should have the same label. The data

features used here are the colour characteristics and local motion vector at the site. These

features are assumed to be independent, and so the likelihood is factorised into two components:

P (I,D|L(x), θ) = P (I(x)|L(x), θ)
︸ ︷︷ ︸

Colour likelihood

P (D(x)|L(x), θ)
︸ ︷︷ ︸

Vector likelihood

(7.5)

Segmenting of the video at pixel granularity would require that each pixel is a site in itself.

However, computing label assignments at pixel granularity is prohibitively computationally ex-

pensive. Furthermore, segments in video are usually much larger than one pixel, and so pixel

granularity is not necessarily required. To improve computational performance, then, pixels are

manipulated in blocks, where each block is a site. Here a blocksize of 17× 17 pixels is used, for

analysis of PAL video at a resolution of 720 × 576 pixels.

7.2 Colour Model

The colour likelihood P (I(x)|L(x), θ) is a measure of how likely it is that the colour values at

site x were generated by L(x). The model for the label contains a representation of the colour

distribution for that label, and the site also contains a distribution of colours. The likelihood of

each label at the site is then inversely related to the distance between the label distribution and

the site distribution.

7.2.1 Colourspace selection

In colour video, the colour of each pixel is represented with a three-tuple. This three-tuple

represents a point in some colourspace. A wide variety of colourspaces have been developed,

each suited to different applications. Digital video data is usually stored in some variant of the

YUV colourspace, which lends itself to compression and transmission. However, this colourspace

is not perceptually uniform: the perceived colour difference of a given numerical difference in

a component value is not uniform across the range of the component. The CIE L, u*, v*

colourspace was developed to have approximate perceptual uniformity throughout its gamut,

and is therefore chosen to represent colour distributions here.

Each colour component is treated as independent, and so the colour likelihood is factorised

into three components

P (I|L(x), θ) = P (IL(x)|L(x), θ)P (Iu∗(x)|L(x), θ)P (Iv∗(x)|L(x), θ) (7.6)
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where Ik is the image data in channel k ∈ {L, u∗, v∗}.

7.2.2 Distribution distance

Various methods of assessing the difference between the distribution of colour in the block being

assessed and the distribution of colour in the model can be adopted. An important criterion

for the distance measure used is that partial matches should be recognised. Where a label

corresponds to a moving object much larger than the site size, each site may contain only

some of the colours associated with the label. These sites should have high likelihood of the

corresponding label, on the strength of a partial distribution match.

To allow for the possible complexity of coloured labels, a non-parametric histogram repre-

sentation is used for the colour distributions. As described in chapter3, a number of distance

measures can be used to compare the histograms. The simplest measure is the bin-to-bin dis-

tance. While popular due to its conceptual simplicity, it offers a poor representation of relative

difference between histograms, and is not appropriate for partial histogram matching.

The Earth Mover’s Distance (EMD) [264,265] is a histogram distance developed specifically

for image retrieval, and has numerous advantages over the bin-to-bin distance for image segmen-

tation. In this measure the histograms are considered as distributions of mass; one is designated

the ‘supply’ distribution, and the other the ‘demand’ distribution. The distance measures the

minimal amount of work that has to be done to transform the supply histogram into a configu-

ration that satisfies the demand histogram. Partial distribution matching can be incorporated

by not normalising the histograms; the histogram containing greater mass is then chosen as the

supply histogram. Figure 7.1 presents some examples of inter-histogram differences measured

by the bin-to-bin and EMD approaches, illustrating the advantages of the EMD in various cases.

The colour model for each label consists of the three histograms (one for each channel) over

all the sites assigned to the label. This work deals with images digitised to 8-bits per channel,

and so a 256-bin histogram specifies the channel distribution completely. However, the EMD

is a computationally expensive measure, and so histograms of 50 bins are used here. In some

sequences, the channel range in a particular frame is much less than the full gamut of 0-255.

Therefore the 50 bin centres are evenly spaced over the observed channel range in each frame

before the colour models are found.

7.2.3 Colour likelihood

The likelihood of the colour distribution at site x, given the label assignment L(x), is given by

P (Ik(x)|L(x)) ∝ exp−
[
EMD [Hk(x),Hk

L(x)]

2σ̂2
k

]

(7.7)

Here Hk(x) is the histogram of values for channel k at site x, and Hk
L(x) is the histogram of

values for channel k in the model with label L(x). σ̂2
k is a constant chosen to represent the

expected within-class variance of the colour distance in channel k.
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(a) Three histograms are shown. h2 and h3 have no overlap with h1, but h3 is further from h1 than h2. The

bin-to-bin difference B2B(h1, h2) is the same as B2B(h1, h3), taking the value 4 in both cases. The EMD takes

the ‘distance of the difference’ into account: EMD(h1, h2)=5, EMD(h1, h3)=25.
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(b) This figure illustrates partial histogram matching. h2 is a subset of h1. The bin to bin distance B2B(h1, h2)

is 2. If the histograms are normalised, B2B(h1 − h2) = 100. Using the EMD, EMD(h1, h2) = 0. When the

histograms are normalised, EMD(h1, h2) = 12.5. Thus the EMD is suitable for partial matching of un-normalised

histograms.

Figure 7.1

7.3 The Edge Process

Adjacent sites containing dissimilar data are less likely to be members of the same segment

than neighbouring sites with similar data. It is therefore expedient to measure the similarity of

adjacent sites in advance. This gives rise to the edge process [298,325], a line field having values

for each clique of blocks, describing the distance between their data. Here the edge process is

estimated using the site colour content, and the EMD measure described above is used to assess

the similarity of neighbouring blocks.

In many implementations a ‘hard’ (binary valued) edge process is used, and is iteratively

optimised as part of the segmentation process. This add significantly to the complexity and

computational cost of the process, however. Here a soft, scalar-valued edge process is used, such

that the influence of a block on its neighbour is proportional to the similarity of their colour

content. This edge process is precomputed for each frame of the video before segmentation is

undertaken.

To estimate the edge process, the EMD is calculated between all pairs of neighbouring blocks
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in the label field, for each of the L, u*, and v* histograms. This results in twelve difference maps:

Dk
v (r, c) = EMD[Hk(r, c)),Hk(r + 1, c))] (7.8)

Dk
h(r, c) = EMD[Hk(r, c),Hk(r, c + 1))] (7.9)

Dk
d1(r, c) = EMD[Hk(r, c),Hk(r + 1, c + 1))] (7.10)

Dk
d2(r, c) = EMD[Hk(r, c),Hk(r − 1, c + 1))] (7.11)

where k ∈ {L, u∗, v∗} represents the three colour channels, and v, h, d1, d2 are the vertical,

horizontal, descending diagonal, and ascending diagonal directions. Hk(x) is the histogram of

the values in channel k at site x.

Peaks in the difference maps are assumed to correspond to edges. These are identified by

finding the zero crossings in the derivative. Let D(n) be the difference values in one channel

along a particular orientation, for example

D(n) = Du∗
v (n,C) (7.12)

for some fixed column C. This is essentially a first derivative signal along a column of the image.

Such a signal is shown in the uppermost plot of figure 7.2. The signal D′(n) = D(n)−D(n− 1)

is then found, shown in the middle plot of figure 7.2. This is a second derivative of the image,

and thus zero crossings in this signal correspond to edges in the image [279]. The edge strength

signal, Z(n), is then given by

Zv(n) =







min(|D′(n)|, |D′(n+ 1)|) if D′(n) > 0 ∧D′(n+ 1) < 0

0 otherwise
(7.13)

where strength of the edge is taken to be the minimum of the slopes on either side of the peak.

The lowermost plot in figure 7.2 shows the edge strength associated with the detected peaks.

The final difference map values for each direction are generated by addition across the chan-

nels, for example

Zv(r, c) = ZLv (r, c) + Zu∗v (r, c) + Zv∗v (r, c) (7.14)

The difference map for for any pair of adjacent sites, Z[(r, c), (r′, c′)] is then defined by the four

oriented difference maps. To create a soft edge process, E[(r, c), (r′, c′)], the difference values

are mapped to the range 0, 1 according to

E[(r, c), (r′, c′)] = G(6,10)

(
Z[(r, c), (r′, c′)]

)
(7.15)

G(µ,σ2)(x) = 0.5

(

1 + erf

(
x− µ√

2σ2

))

(7.16)

G(µ,σ2) is the cumulative distribution function of a Gaussian. Here µ = 4 and σ2 = 2, and

so site difference peaks of strength 4 are mapped to an edge value of 0.5. This mapping has

been found to generate reasonable soft edge maps for several sequences. The mapping curve is

shown in figure 7.3. Figure 7.4 illustrates the edges exceeding various threshold values in the

coconut sequence; further examples of edge maps found by this process are presented on the

accompanying DVD.
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Figure 7.2: Locating peaks in the difference trace. The locations of detected peaks are marked

by circles.
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Figure 7.3: Mapping from difference values to edge strength. The curve is the cdf of a Gaussian

with mean 4 and variance 10.
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Figure 7.4: Edges in a frame from the coconut sequence, with edge thresholds of 0.1, 0.5, and

0.9.
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7.4 Motion Models

The motion in the image sequence is represented by the local motion vectors. The forward and

backward vectors are defined by the image sequence model

In(x) = In−1(x + Db
n(x)) (7.17)

In(x) = In+1(x + Df
n(x)) (7.18)

The Wiener-based local motion estimation technique described by Kokaram in [178] is used to

generate the vectors here. The vector model for each label is represented using a two-dimensional

Gaussian distribution; a confidence measure on each vector C(x), described in the next section,

is used to weight the contribution of the vector to the Gaussian.

Some issues pertaining to the choice of vector parameterisation are described first, followed

by a more exact description of how the vector models for each label are found, and how the

likelihood of a particular vector given a vector model is calculated.

7.4.1 Cartesian / Polar vector representation

There are several ways in which motion can be parameterised for the purposes of motion-

based segmentation. The most commonly used parameterisation is the Cartesian representation,

Dk(x) = [dx, dy]. k ∈ {b, f} denotes the direction, either backwards or forwards. This represen-

tation results in a ‘strict’ segmentation of the vector field, in that dissimilar vectors will have high

distances. However, alternative parameterisations are more suitable in sequences where motion

estimation is difficult. Consider the vectors shown in figure 7.5 (a). The highlighted region

corresponds to the sites in one segment after a hypothetical vector-based segmentation. The

motion of the dancer’s dress is pathological, and results in incoherent motion vectors. The dis-

tribution for this label, then, should represent only that motion is occurring, without specifying

the nature of that motion.

Figure 7.5 (b) shows the Gaussian distribution fit to the Cartesian representation of these

vectors. The fitted distribution has a high variance and is essentially uninformative. In particu-

lar, due to the near-random spread of the vectors in the segment, the model mean is very close

to zero, and so zero vectors in stationary parts of the scene will have a high likelihood given this

model.

Figure 7.5 (c) shows the Gaussian distribution fit to the polar representation of these vectors.

Here, the mean magnitude is 5 pixels, indicating motion, but the distribution remains quite

broad, and the zero vector is about one standard deviation from mean. Figure 7.5 (d) shows

the Gaussian fit to the vectors in a [log(r), θ] parameterisation. Taking the log of the magnitude

has the effect of dilating the vector space at low magnitudes, and compressing the range for

larger vectors; the distance between two vectors along the log(r) axis is proportional to the

relative difference in their magnitudes. In this parameterisation, the vector magnitudes must

be thresholded, to avoid taking the log of 0; here a minimum magnitude threshold of 0.01 is
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(a) Pathological motion of clothing in the greenDancer

sequence
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(b) Vector distribution with (x, y) parameterisation
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Figure 7.5: Vector parameterisation and pathological motion. The red circles indicate the mean

and standard deviation of the Gaussian fit to each distribution.
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used. With this threshold, the distance between the model mean and the zero vector is over

4 standard deviations. The [log(r), θ] representation of the vector in direction k at site x is

designated Mk(x).

7.4.2 Wrapping the vector angle distribution

A difficulty with vector models parameterised on vector angle is that the parameter space is

non-Euclidean with respect to distance, being toroidally connected at π and −π. In practice,

this results in undesirably high variance in the angle component for leftward motion (where the

vector angle is close to π). Figure 7.6 (a) shows a region undergoing leftward motion in the

coconut sequence, and the high variance in the angle parameter is illustrated in figure 7.6 (b).

In figure 7.6 (c), the vector distribution is shown where the angle space has been shifted to range

over −2π, 0. The variance in the angle dimension of this distribution is an order of magnitude

smaller than that over the −π, π range, which indicates that this range is to be preferred in this

case.

Shifting the range of the vector angles in this way is denoted wrapping the angle space.

Denote the angles of the vectors by A, and the corresponding vector confidences by C. The

vector angles will be in the range −π, π. The angles after wrapping at θ, denoted Aθ, are given

by

Aθ
i =

{

Ai, Ai ≤ θ

Ai − 2π, Ai ≤ θ
(7.19)

The wrap point minimising the variance of angles A, θ̂(A), is then found according to

θ̂(A) = arg min
θ∈(−π,π)

[∑

iC
2
i (A

θ
i − Āθ)(Aθi − Āθ)′
∑

iC
2
i

]

(7.20)

Āθ is the weighted mean of the angles A, with weights given by the vector confidences C. θ̂

is found using the algorithm described in [258], based on golden section search and parabolic

interpolation. The vectors after wrapping at the optimal point θ̂ are denoted Mk
θ̂
(x).

7.4.3 Vector models

The vector model for label l in direction k, using the Cartesian (x, y) parameterisation, is found

by

µ
k
l =

∑

x∈{x|L(x)=l} C
k(x)Dk(x)

∑

x∈{x|L(x)=l} C
k(x)

(7.21)

Rk
l =

∑

x∈{x|L(x)=l}(C
k(x))2(Dk(x) − µ

k
l )(D

k(x) − µ
k
l )

′
∑

x∈{x|L(x)=l}(C
k(x))2

(7.22)

As mentioned above, the vector at each site is weighted by a confidence measure, Ck(x), to

prevent the vector models being influenced by erroneous motion estimation; the calculation of

this vector confidence is addressed in the next section.
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(a) Leftward motion in the coconut sequence
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(b) Vector distribution with (log(r), θ) parameterisa-

tion

−5 −4 −3 −2 −1 0 1 2 3 4

−2*pi

−3*pi/2

−pi

−pi/2

0

µ = 2.578 − 2.865

Σ2 =

[

0.467 −0.118
−0.118 0.328

]

log(r)

θ

(c) Vector distribution with (log(r), θ) parameterisa-

tion, wrapped angle domain.

Figure 7.6: Vector parameterisation and leftward motion. The red circles indicate the mean and

standard deviation of the Gaussian fit to each distribution.
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For the [log(r), θ] vector representation, the vector model is found as in equations 7.21

and 7.22, with Dk(x) replaced by Mk
θw

(x).

7.4.4 Vector likelihood

For the (x, y) vector parameterisation, the vector likelihood is found by

P (Dk(x)|L(x)) ∝ exp−
[

0.5
(

Dk(x) − µ
k
L(x)

)′ (
Rk
L(x)

)−2 (

Dk(x) − µ
k
L(x)

)]

(7.23)

where µ
k
L(x) and Rk

L(x) are the mean and covariance of the Gaussian vector distribution for the

model with label L(x).

The likelihood is similar for the representations with an angle parameter:

P (Mk(x)|L(x)) ∝ exp−
[

0.5γ
(

Mk(x) − µ
k
L(x)

)′ (
Rk
L(x)

)−2
γ
(

Mk(x) − µ
k
L(x)

)]

(7.24)

Here γ is a function wrapping the θ component of the difference to the range 0, π

γ(log(r), θ) =

{

(log(r), θ), θ ∈ (0, π)

(log(r), 2π − θ), θ ∈ (π, 2π)
(7.25)

7.5 Vector confidence

Two kinds of error can arise in optic flow estimation. The more fundamental errors arise from

model inadequacy with respect to the scene content. For example, occlusion and revealing

effects, changes in object appearance or attitude, and illumination changes, can all confound

optic flow-based estimation. However, motion measurements for those portions of a scene subject

to translational motion, and hence in which the optic flow model is adequate, can also be

inaccurate. One well-documented example is the aperture problem. Optic flow estimation is

always conducted over some support region, usually a rectangular block. The aperture problem

arises when the block is small relative to the object features in the scene. Motion estimation in

a region falling wholly inside a spatially uniform moving object can be expected to return zero

optic flow. Furthermore, where a motion estimation block spans a straight edge of a moving

object, the estimate is only reliable perpendicular to the edge, and quite unreliable along the

direction of the edge.

As the work described here is fundamentally concerned with using motion vectors for image

sequence analysis, some way of assessing the confidence of the vectors is needed. The focus here

is on finding errors due to model inadequacy; vectors affected by the aperture problem are in

some sense the right answer for local optic flow, though they do not reflect the true motion.

7.5.1 Image Gradient Confidence

Optic flow methods most commonly exploit spatial gradients in the image sequence. In many

cases, the amount of gradient in a block can indicate the confidence associated with the motion
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measurement at that block. To assess the vector confidence correctly, the magnitude of the

reported vector must be related to the scale of the gradient in the block. Assuming that the

image sequence is somewhat corrupted by spatial noise, it can be assumed that a vector of 0.5

or 1 pixel magnitude can only be accorded a high confidence if there is gradient at high spatial

frequency in the sequence. For larger magnitude vectors, lower-frequency spatial gradients are

sufficient.

The first stage in this approach, then, is to compute the gradient at different scales for the

support region of the vector. This is achieved by building a three-level image pyramid, through

downsampling the image by factors of two and four. Only the intenstity (Y) component of the

image is used here. Each level of the image pyramid is then filtered with horizontal and vertical

Prewitt filters:

∂

∂x
=






−1 0 1

−1 0 1

−1 0 1




 ,

∂

∂y
=






−1 −1 −1

0 0 0

1 1 1




 (7.26)

The proportion of filtered pixels exceeding a threshold in the support region of the vector is

found. Where Is is the intensity image at level s ∈ {0, 1, 2}, define

Gsx(x) =

∑

p∈P (x)(|∂I
s

∂x (p)| > ρ)

|P (x)| , Gsy(x) =

∑

p∈P (x)(|∂I
s

∂y (p)| > ρ)

|P (x)| (7.27)

Gs(x) = 0.5(Gsx(x) +Gsy(x)) (7.28)

Gs is then fraction of significant gradient in the region at each level. A threshold of ρ = 12

intensity levels is used.

The gradient-based confidence of a vector is assessed against a gradient scale according to

the magnitude of the vector, as follows:

Grad(x) =







G0 if ‖D(x)‖ < 2;

G1 if ‖D(x)‖ < 4;

G2 otherwise

(7.29)

The gradient score is mapped to a confidence using

Cg(x) = G(0.15,0.003)(Grad(x)) (7.30)

where G is the Gaussian cdf defined in 7.16. Hence, vectors whose support region has 15%

significant gradient at the relevant scale are accorded a gradient-based confidence of 0.5.

This gradient-based confidence measure does not incorporate information on the orientation

of the gradient in each site. As described in chapter 2, motion can only be accurately estimated

perpendicular to image gradient (the aperture effect); as described there, the numerical stability

of the optic flow equation has been incorporated into local motion estimation schemes to account

for this. Irani et al.exploit this fact for vector confidence assessment, as described in [158].

7.5. Vector confidence 202

7.5.2 Vector Confidence via the Mirror Constraint

At a site x inside an object whose motion is being tracked by the motion estimator, the forward

vector D
f
n(x) should be the mirror of the backward vector at Db

n+1(x + D
f
n(x)). A suitable

diagnostic for estimator failure, including revealing / occlusion effects, is then the mirror con-

straint [178]:

Df
n(x) + Db

n+1(x + Df
n(x)) = 0 (7.31)

Db
n(x) + D

f
n−1(x + Db

n(x)) = 0 (7.32)

To measure the extent to which a vector violates the mirror constraint, define the forward

disparity by

Dispfn(x) =

∥
∥
∥D

f
n(x) −Db

n+1(x + D
f
n(x))

∥
∥
∥

∥
∥
∥D

f
n(x)

∥
∥
∥

(7.33)

and similarly for the backward vectors. The disparity is mapped to a confidence score using

Cfm(x) = 1 −G(0.5,0.02)(Dispf (x)) (7.34)

where G is the Gaussian cdf defined in 7.16. Hence, vectors with a mirror disparity of 0.5 are

given a confidence value of 0.5. Vectors due to revealing and occlusion generally have disparities

much greater than one.

7.5.3 Vector Confidence via Vector Field Divergence

A further confidence measure is suggested by the fact that in translational motion in an image

sequence, the vector field should be spatially smooth. Where multiple vectors are found to

point to the same location, model inadequacy or motion estimation failure should be suspected.

Figure 7.7 illustrates this in the case of tracking failure in a region of the coconut sequence.

This aspect of the vector field can be assessed via the vector divergence. Where (r, c) are

the site co-ordinates and (u, v) are the vector components, the divergence is a measure of

∂(u)

∂(r, c)
+

∂(v)

∂(r, c)

This is computed as the weighted mean of the difference between the vector and its neighbours:

Div(x) =

∑

x′∈N (x) w(x,x′) ‖D(x′) −D(x)‖
‖D(x)‖∑x′∈N (x) w(x,x′)

(7.35)

where the weights, w(x,x′), account for the edge process and distance between the sites:

w(x,x′) =
1 −E[x,x′]
‖x − x′‖ (7.36)
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Figure 7.7: Non-unique vector destinations where tracking has failed

The divergence is mapped to a confidence score using

C∇(x) = 1 −G(0.7,0.05)(Div(x)) (7.37)

where G is the Gaussian cdf defined in 7.16. Hence, vectors with a divergence score of 0.7 are

given a confidence value of 0.5.

7.5.4 Combining the Confidence Measures

The three confidence measures defined above are combined to give a confidence measure for each

vector. For the backward vectors, the confidence is

Cb(x) = G(1.2,0.3)(0.5C
b
g(x) + 2Cbm(x) + Cb∇(x)) (7.38)

and similarly for the forward vectors. The coefficients of each confidence component reflect their

relative reliability. The function defined in 7.16 is applied with µ = 1.2, σ2 = 0.3 to map these

values to the range 0, 1.

7.6 Encouraging Smoothness

Spatially or temporally adjacent sites should in the most part have the same label; this intuition

informs the spatio-temporal smoothness prior on configurations of the MRF. The smoothness

likelihood is factorised into the spatial and temporal components,

P (Ln(x)|Ln−1, Ln(−x)) = P (Ln(x)|Ln−1)P (Ln(x)|Ln(−x)) (7.39)

and each component is assessed separately.

If a label l is assigned to a site x, temporal smoothness suggests that the motion compensated

location of the site in the previous frame should have been assigned the same label l, or at least
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be close to a site with the label l. This is assessed using

St(x) = arg min
x′∈{Ln−1=Ln(x)}

(∥
∥
∥x +Db

n(x) − x′
∥
∥
∥

)

(7.40)

which measures the minimum distance between the motion compensated location of the site x

in frame n − 1 and the sites having label L(x) in the Ln−1. The temporal smoothness prior is

then given by

P (Ln(x)|Ln−1) ∝ exp(− St

2σ̂t
) (7.41)

σ̂t is a constant chosen to representation the expected within-segment variance of the temporal

distance. A value of 0.5 is used.

For spatial smoothness, define the spatial smoothness score Ss by

Ss(x) =

∑

x′∈N (x)w(x,x′)[L(x′) 6= L(x)]
∑

x′∈N (x) w(x,x′)
(7.42)

where the weights w(x,x′) are defined by

w(x,x′) =
C l(x′)(1 − E[x,x′])

‖x − x′‖ (7.43)

These weights take into account the edge process and inter-site distance, just as those in equa-

tion 7.36. C l is the label confidence field, introduced in the next section. The spatial smoothness

prior is then evaluated using

p(L(x)|L(−x)) ∝ exp

(

− Ss

2σ̂s

)

(7.44)

7.7 Label Assignment Confidence

It is found in some cases that a particular site has very similar model-membership likelihoods for

two or more models. This implies that the site is plausibly a member of either of these models,

which in turn can be interpreted as a low confidence in the label assignment. The implications

for smoothness are that sites with a low confidence should not influence their neighbours in the

smoothness computation, and the incorporation of the label confidence, C l, provides this. The

label confidence is defined as

p(I(x),D(x), Ln−1|L(x) = l1)

p(I(x),D(x), Ln−1|L(x) = l2)
(7.45)

where l1 and l2 are the two label assignments resulting in the highest posterior probability,

excluding spatial smoothness, for site x:

l1 = argmax
l∈Ln

(Pr(I(x),D(x), Ln−1|L(x) = l)) (7.46)

l2 = argmax
l∈Ln,l 6=l1

(Pr(I(x),D(x), Ln−1|L(x) = l))
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Rather than take the ratio of probabilities, the difference of the negative log probabilities is

used:

c(x) = − log(p(I(x),D(x), Ln−1|L(x) = l2)) −− log(p(I(x),D(x), Ln−1|L(x) = l1)) (7.47)

These values are mapped to a confidence in the range 0, 1

C l(x) = G(log(2)/2,0.01)(c(x)) (7.48)

A difference of log(2)/2 in the negative log likelihood corresponds to a difference factor of
√

2

in the probabilities, which maps to a confidence of 0.5. A two-fold, or greater, difference in the

likelihoods maps to a confidence value of 1.

It is possible to further impose that sites with low label confidence should be more easily

influenced by their neighbours in the smoothness computation, by defining

Ss1(x) = C l(x)−1Ss(x) (7.49)

This boosts the smoothing energy at sites with low label confidence. However, where a site has

low label confidence due to the high likelihood of two models, the smoothness boost can result

in a third, low-likelihood model being assigned at the smoothing stage, and so Ss1 is not used.

7.8 Changes in the Motion Content

The video segmentation approach described here is essentially concerned with tracking coherent

segments from one frame to the next. Segments are tracked on the assumption that the motion

and colour of a segment is stable from frame to frame. However, this assumption is invalidated

when objects in the scene change direction. Figure 7.8 (a) illustrates this occurrence in four

frames from the coconut sequence. As the directions of motion of the hands change, the label

assignments of both hands changes over the four frames shown. This is because the motion

changes so rapidly that the vector models for the existing labels becomes ‘out of date’, in that

they are a poor match for the new motion. This results a new label being introduced to match

the new motion.

To allow for this effect, the motion model for all labels is updated at the start of processing

of each frame until the model matches some of the expected sites in the frame. If the motion of

an object with label l changes between frame n− 1 and n, the corresponding sites will exhibit a

poor fit to the vector model for label l. To assess this, the mean vector fit is introduced, given

by

F̂n,k(l) =

∑

x∈Ln=l− log(P (Mk
n(x)|Ln(x)))Ckn(x)

∑

x∈Ln=l C
k
n(x)

(7.50)

which is a measure of how well the vectors fit the vector model in frame n and direction k. The

vector model is that computed in equations 7.21 and 7.22, and P (Mk
n(x)|Ln(x)) is then given

by equation 7.24.
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When processing of frame n commences, the vector models and mean vector confidence for

the labels in Ln−1 are known. Whether the motion within a label has changed is then assessed

by examining the vectors in the appropriate locations in frame n. The set of expected sites for

a label l in frame n is given by

Sl,n = {x : x ∈ Ln−1 = l} + µ
f
n−1,l (7.51)

where µ
f
n−1,l is the mean forward vector for label l in frame n − 1. The approach adopted

consists in assuming that most of these sites correspond to the object being tracked with label

l, and increasing the variance of the model until some proportion of these sites exhibit a good

fit to the model. The procedure is a sequence of iterations over

F i =
{

− log(P (Mk
n(x)|Ln(x) = l)) : x ∈ Sl,n

}

(7.52)

F ip =
|{n : n ∈ F i ∧ n < F̂n−1,k(l)}|

|F i| (7.53)

(Rk
n−1)

i = 1.05(Rk
n−1)

i−1 (7.54)

F i is the set of vector fits to the model in the expected sites. F ip is then the proportion of those

sites which have a fit better than the mean for that model. The iteration is terminated when F ip

is greater than 0.1. At each iteration, the covariance matrix for the model is scaled by a factor

of 1.05.

Figure 7.8 (b) shows how increasing model covariances to account for changes in object

motion at the start of processing of each frame enables the label assignment to the hands in a

section of the coconut sequence to remain stable.

7.9 The Segmentation Process in Outline

The overall segmentation scheme can now be outlined as follows. It is desired to segment frame

n, given a set of labels Ln and their associated models. First, the fixed energies for each label

are found at each site:

Fn(x, l) =C l(x) (− log (Pr(I(x)|L(x) = l))

−C l(x)Cb(x) log
(

Pr(Db(x)|L(x) = l)
)

(7.55)

−C l(x)Cf (x) log
(

Pr(Df (x)|L(x) = l)
)

− log (Pr(Ln(x) = l|Ln−1))

The label field is then initialised, with each site being assigned the label having the lowest

fixed energy:

L0
n(x) = arg min

l∈Ln

F (x, l) (7.56)
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(a) Segmentation without adaptive vector model variance

(b) Segmentation with adaptive vector model variance

Figure 7.8: The effect of adaptive vector model variance. Each figure shows four frames, reading

left to right, top to bottom.
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Then the spatial smoothness of the label field is refined on a site-by-site basis. The Iterative

Conditional Modes scheme [325] is employed here. Each site is updated according to

Li+1
n (x) = arg min

l∈Ln

F (x, l) − Λ log
(
p(l|Lin(−x))

)
(7.57)

Λ here controls the relative influence of the spatial smoothness prior; a value of 8 is used. Several

iterations over the entire label field are made. The sites are visited in a chequerboard-style scan

skipping over two sites in each row and column.

Once Ln has been established, the data models for each label are updated as described

previously. Before the next frame can be processed, however, the label field is examined for new

motions, where an existing model should be split, and model convergence, where two models

exhibit the same motion and should be merged. These topics are the subject of the next section.

7.10 New Clusters and Refining the Segmentation

For this application it is not known in advance how many models are required to track the

motion content of a given image sequence, and the number of models required will vary over the

course of the sequence. Thus new labels must be introduced over the course of the sequence.

Two approaches for the introduction of new labels are described here.

7.10.1 The No-Match Label

Wherever a site is a poor match for all existing models, it is assigned a new label. The site

update equation is then

l′ = argmax
l∈L

(Pr(L|x=l)) (7.58)

L(x) =

{

l′, − log (Pr(L|x=l′)) < ρ

max(L) + 1, otherwise
(7.59)

Thus all sites that are a poor match for all existing models are assigned the same new label.

The threshold ρ is determined by

ρ = ρI + ρD(x) + ρSt (7.60)

Here ρ is the sum of the out-of-class energies for the colour, vector, and temporal smooth-

ness data. For the colour and temporal smoothness energies, these are constants derived from

σ̂2
k∈{L,u∗,v∗} and σ̂2

t :

ρI =
∑

k∈{L,u∗,v∗}
− log(Pr

k
(2.576σ̂k)) (7.61)

ρt = − log(Pr
t

(2.576σ̂t)) (7.62)
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Here k is a random variable drawn from a normal distribution with mean 0 and standard devia-

tion σ̂k, i.e. k ∼ N (0, σ̂k), and similarly t ∼ N (0, σ̂t). 2.576 standard deviations corresponds to

the 99% confidence interval. The idea is if that all label assignments to a site result in an EMD

or temporal smoothness outside the 99% confidence interval, the site should be assigned a new

label.

In the case of the vector data, the covariance of each vector model is different, and one of

these must be chosen to calculate the out-of-class energy. Therefore the two labels l1, l2 having

the least fixed energy at the site x are found, as in equation 7.46, and of these the vector model

with a better fit for the vector at site x is used to calculate the out-of-class energy.

l′ = arg max
l∈{l1,l2}

− log

(

Pr
l′

(Dk(x))

)

(7.63)

ρDk = − log(Pr
l′

([0, 2.576]Rl′ )) (7.64)

where l′ ∼ N (0,Rl′).

The ‘no-match’ label corresponds to new regions in the frame, but it is not known how

many new regions are involved. As a first measure to resolve this, all spatially contiguous

regions having the ‘no match’ label are assigned unique labels. The approach described below

for splitting existing clusters can also be applied.

7.10.2 Splitting Existing Clusters

In the course of video segmentation it can arise that one label corresponds to two distinct

motions, for example where two objects moving alongside each other (and therefore assigned

the same label) split apart. To address this, a cluster splitting scheme was investigated. Clusters

are split by fitting a Gaussian Mixture Model to their vectors. Either the backward or forward

vectors may be used depending on which direction has the greater average confidence Cb, Cf

within the cluster:
1

|L = x|
∑

x∈L=x

Ck(x) (7.65)

In the following, D(x) should be understood to mean either Db(x) or Df (x), depending

on the direction of higher confidence, and similarly C(x) represents the appropriate vector

confidence. Colour information is not used in cluster splitting, as a coherently moving object

can often consist of distinctly coloured regions.

A Gaussian Mixture Model with N centres takes the form

θ = {πc, µc,Rc|c = 1 . . . N} (7.66)

where πc, µc, and Rc are the mixture coefficient, centre mean, and centre covariance of com-

ponent c. The mixture model is initialised using the K-means technique, and refined using the

Expectation Maximisation (EM) algorithm. Clustering is applied using the Cartesian [dx, dy]
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representation of the vectors, as the toroidally connected nature of the polar vector space makes

finding the optimal set of mixture components difficult.

Consider that the cluster with label l is to be split. The procedure commences with the K-

means algorithm, which determines a set of cluster centres C minimising the objective function

J =
∑

c∈C

∑

x∈L=l

σc(x)C(x) ‖D(x) − c‖ (7.67)

Above and in the following, the vector confidence C(x) is used as a weight so that the cluster

splitting is not influenced by erroneous vectors. To start the algorithm, a set of initial cluster

centres C0 is found. The procedure then iterates over

σic(x) =

{

1, Cc = arg minc∈Ci ‖D(x) − c‖}
0, otherwise

(7.68)

Ci+1
c =

∑

x∈L=l σc(x)C(x)D(x)
∑

x∈L=l σc(x)C(x)
(7.69)

Here data are assigned to a cluster centre, and then the cluster centres are moved to reflect the

data assignment. Iteration terminates when the cluster centres remain stationary.

The EM procedure for Gaussian mixture models is similar to K-means, with soft cluster as-

signments. This algorithm optimises the mixture model parameters θ. Firstly, these parameters

are initialised using the results of the K-means algorithm:

π0
c =

∑

x∈L=l σc(x)
∑

x∈L=l 1

µ0
c =

∑

x∈L=l σc(x)C(x)D(x)
∑

x∈L=l σc(x)C(x)
(7.70)

R0
c =

∑

x|σc(x)=1(C(x))2(D(x) − µ0
c)(D(x) − µ0

c)
T

∑

x|σc(x)=1(C(x))2

For initialisation, the cluster membership functions σc(x) are assumed to be those found at the

last iteration of the K-means procedure. Within the EM function, they are unknowns. The

E-step consists of calculating the soft membership functions at each site, according to

hic(x) =
P (D(x)|σc(x) = 1, θi)πic

∑

c′∈Ci P (D(x)|σc′(x) = 1, θi)πic′
(7.71)

where

P (D(x)|σc(x) = 1, θi) =
(
(2π)2|Ri

c|
)−1/2

exp

{

−1

2
(D(x) − µic)(R

i
c)

−1(D(x) − µic)

}

(7.72)
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The M-step then updates the model parameters, using

µi+1
c =

∑

x|σc(x)=1 h
i
c(x)C(x)D(x)

∑

x|σc(x)=1 h
i
c(x)C(x)

Ri+1
c =

∑

x|σc(x)=1 h
i
c(x)(C(x))2(x− µi+1

c )(x − µi+1
c )T

∑

x|σc(x)=1 h
i
c(x)(C(x))2

(7.73)

πi+1
c =

1
∑

x∈L=l 1

∑

x|σc(x)=1

hic(x)

When a cluster with label l has been split, the largest subcluster is assigned the existing

label l, and the remaining subclusters are given new labels.

The question of how many subclusters a given cluster should be split into is an instance of

the model order selection problem. Numerous approaches to this problem have been proposed,

including the Akaike Information Criterion, Minimum Description Length, and the Bayes In-

formation Criterion. A simpler approach, popular for model order selection by inspection, is

V-fold cross validation (RANSAC). Here the evidence for each proposed order is assessed by

repeatedly partitioning the data into a large training set (here containing 90% of the vectors)

and a test set. A model of order N is fit to the vectors in the training set, and then the model

fit error for the vectors in the test set is found against this model. A model of excessively low

(respectively high) order will underfit (respectively overfit) the test set, resulting in a high error

for the training set vectors. Thus test-set fit error against model order N follows a concave

curve; the model order corresponding to minimum test-set error is chosen.

The V-fold cross-validation scheme was evaluated for choosing the cluster splitting order,

but was rarely found to give good results. This is attributed to the small size of the data

set (number of sites / vectors in a label, typically 50–100), which makes accurately estimating

the model order difficult. The scheme finally chosen was to split clusters into three parts, and

rely on cluster merging and site smoothing to discard superfluous subclusters. This is similar

to the approach taken by Wang and Adelson in [321], where the first frame of the sequence

is deliberately oversegmented and models that are very similar are merged. Model merging is

described next.

7.10.3 Merging Clusters

A further refinement to labelfield is to consider merging similar clusters. At various stages in

processing the video, oversegmentation can arise. This impacts negatively on performance, and

makes interpreting the segmentation result more difficult. Cluster merging is invoked to mitigate

the effects of oversegmentation.

Testing for whether two clusters should be merged is based principally on the vector distri-

bution of the clusters. Whether the backward or forward vector distribution is used depends

on the confidence associated with the vectors. Let l1 and l2 be labels whose models are being
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assessed for merging. The direction k used for assessment is given by

k = arg max
k′∈{b,f}

∑

x∈L=l1
Ck

′

(x) +
∑

x∈L=l2
Ck

′

(x)
∑

x∈L=l1
1 +

∑

x∈L=l2
1

(7.74)

The vector distributions being assessed are then µkl1,R
k
l1

and µkl2,R
k
l2

. The distribution

distance used is the cross-entropy or Kullback-Leibler distance [92], which has a closed form for

Gaussian distributions:

‖l1, l2‖KL =
1

2

(

log |R−1
l1

Rl2 | + Tr(R−1
l1

Rl2) + (µl1 − µl2)K
−1
l1

(µl1 − µl2)
T −N

)

(7.75)

Tr(R) is the trace of the matrix R, equal to the sum of the elements on the diagonal. N is

the dimensionality of the distributions being compared, here 2. The direction superscript k has

been omitted for clarity. As the cross-entropy is an assymetric distance, the merging criterion is

1

2
(‖l1, l2‖KL + ‖l2, l1‖KL) < ρ (7.76)

The threshold value ρ is 3 in this work.

7.10.4 Cluster histories

A flaw in the label merging approach described above is the lack of historical information. This

means that, for example, where two different objects in the video collide and remain at rest

adjacent to each other for a few frames, they will be merged as they exhibit similar motion—

even though they are distinct objects in the video.

To prevent this happening, a historic vector distribution is incorporated into the motion

model for each label. This historic distribution is designed to be a weighted mean of the vector

model over time, and is updated as a linear combination of the existing historic distribution and

the current vector distribution. Define the ‘history factor’, F , to be the relative importance of

the existing historic distribution against the present vector distribution. Then the weights for

the linear combination are found by

a1 =
F

1 + F
, a2 =

1

1 + F
(7.77)

Then the historic vector distribution can be updated using

µt = a1µt−1 + a2µ (7.78)

Rt = a2
1Rt−1 + a2

2R (7.79)

where (µt,Rt) is the updated historic model for frame t, (µt−1,Rt−1) is the historic model for

the previous frame, and (µ,R) is the vector model computed for vectors in the current frame.

The historic vector model for a new label is initialised to be the same as the current vector

model for the label.

The ‘history factor’ F can be chosen to be a fixed constant (e.g. 10). Alternatively, the ‘age’

of the label (the number of frames since the label was first introduced) can be used, such that

the historic vector distribution is updated more slowly for older labels.
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(a) Six frames from the coconut sequence, showing a coconut shell being beaten.

Figure 7.9: Clusters in the coconut sequence.
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(a) Cluster lifetimes.
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(b) Vector magnitude within each

cluster.
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(c) Vector variance within each clus-

ter.

Figure 7.10: Cluster analysis in the coconut sequence. Ground truth edit points are shown by

dotted lines.

7.11 Segmentation Assessment and Analysis

The goal of the video segmentation algorithm described above is to assist in the detection of edit

points. Some of the segments introduced should persistently and consistently track an edit-point

generating object in the video—for example, a dancer, or the arm of a dancer. An analysis of

the motion within each segment, using the motion vector and motion blur analysis techniques

developed in chapter 6, would then reveal the edit points within each segment.

Figure 7.9 shows the segments detected in a number of frames in the coconut sequence. The

desired edit point here corresponds to the collision of the two shells, reflected in the motion of
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the hands and the shells. These portions of the video are consistently and persistently tracked

across the edit point.

A summary of the segments created over the course of the video is shown in figure 7.10

(a). The two major episodes in this video are when the coconut shells are clapped: they are

introduced from either side of the frame, banged together in the middle of the frame, and then

moved outside of the frame area. This occurs twice in the sequence. These two episodes are

clearly visible in this graph, in the segments with labels 1–21 (frames 1–23), and the segments

with labels 24–37 (frames 40–62).

The edit points in the sequence are detected by analysis of the motion of the segments.

Figures 7.10 (b) and (c) show the mean vector magnitude and vector variance traces for each

cluster in the sequence. The edit points in the sequence, shown in vertical dotted lines in the

figure, clearly correspond to minima in the traces.

Segmentation results for more complicated sequences are more difficult to analyse for edit

points. Figure 7.11 (b) shows a segmentation result from the greenDancer sequence. Frame 92

is an edit point, generated principally by the movement of the dancer’s arms. While the dancer’s

right arm is tracked quite well in these frames, maintag a coherent cluster over the left arm is

more difficult. Some oversegmentation of the background is visible; this is due principally to a

change in the scene illumination at the start of the sequence.

Figure 7.11 (c) shows a segmentation of the same frames generated using a 9 × 9 blocksize,

rather than 17 × 17. This smaller blocksize makes it easier to track smaller features in the

video, including both the dancer’s arms. Here the dancer’s left arm is reasonably well-tracked

by a green segment over the frames shown. While segmentation at this resolution improves the

performance in tracking smaller features, the computational cost involved is very high.

Segmentation results over complete sequences are presented on the DVD accompanying this

thesis. While these results do show that the segmentation technique described here performs

reasonably well for motion tracking over short intervals, it is rare that a single object in the

video is tracked by a single label for more than a few tens of frames. This is for a number of

reasons.

Firstly, the segmentation algorithm described here involves a number of parameters. These

include Λ, controlling the influence of the spatial smoothness prior; σ̂2
k, k ∈ {L, u∗, v∗, s}, the

expected within-class variance for the colour EMD measures and temporal smoothness; the

weights used to compute vector confidence; the measure used to compute the label confidence

C l(x); parameters controlling the ‘vector variance growing’ approach for coping with motion

changes, described in section 7.8; and parameters controlling splitting and merging, described

in section 7.10.

Each of these parameters has a qualitative effect on the nature of the segmentation. The

high computational cost of the algorithm makes meaningful exploration of the parameter space

difficult; the present MATLAB implementation requires several days to process a sequence of

several hundred frames. In particular, as the sequence is processed, the number of labels active
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(a) Frames 84, 86, 88, 90, 92, and 94 from the greenDancer sequence.

Figure 7.11: Clusters in the greenDancer sequence.

(c) Segmentation result for the frames shown in figure 7.11 (a) with a 9 × 9 blocksize.

Figure 7.11: Clusters in the greenDancer sequence, with a 9 × 9 blocksize.
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can grow rapidly, impacting severely on the speed. High values for the spatial smoothness

influence parameter, Λ, and expected within-class variance parameters σ̂2
k, reduce the likelihood

of oversegmentation, but in this case smaller features in the video, such as the dancer’s arms,

are more likely to be merged with the background.

The cluster merging technique described in section 7.10 was introduced to counter the ef-

fects of oversegmentation and keep computation time reasonable. However, as described in that

section, merging on the basis of motion similarity within a single frame will cause distinct, tem-

porarily adjacent objects to be merged, and so cluster merging must incorporate some notion of

historic similarity of motion. This similarity of motion should incorporate at least twenty-five

frames, as a pause in the motion of an object can easily last for a second. Reliably characteris-

ing the motion of a segment over a sliding temporal window of this size is difficult, in that the

Gaussian used for the historic distribution can become uninformative. The necessity of incor-

porating a relatively long-term history to deal with object collisions is one aspect in which the

segmentation problem addressed here differs from those more commonly addressed, and little

work addressing this issue has appeared.

A second difficulty with the segmentation problem here is that the most informative motions

in the video are those that are most difficult to track. An edit point is generally generated by a

sudden change in the motion of an object in a video; this is precisely the most difficult circum-

stance to maintain segment coherence. The temporal smoothness prior is motion compensated,

which supposes that motion is being accurately estimated for the segment; this assumption is

most likely to be violated at the edit points. This behaviour suggests that in some cases, the

appearance or disappearance of clusters—cluster ‘churn’—will correspond to the most difficult

motion discontinuities in the sequence, which in turn may correspond to edit points. However,

the correspondence is too slight to be dependably exploited.

The best exploitation of a video segmentation for edit point detection is possible only when

a single segment tracks the object generating the edit point with temporal consistency around

the time of the edit point. When this can be achieved, analysis of the motion within the segment

should reveal the edit point. The question of how to select particular segments for edit point

detection has not been addressed here; the chief focus has been the development of a sufficiently

general segmentation system. However, a review of the segmentation results generated suggest

a number of approaches. Firstly, segments of very short temporal duration are generally due to

noise in the segmentation (caused, for example, by noise in the vector field), and these can be

disregarded. Segments not exhibiting motion in their lifetime correspond to video background,

and can also be disregarded. Motion coherence within a segment is an indicator of relevance—

for example, where a limb is sweeping through space, its motion will be smooth, whereas the

motion of clothing is generally more chaotic. Finally, a number of methods for skin detection in

video have been described [280]. These methods could be used to bias analysis towards those

segments containing skin, which are most likely to correspond to the movements of the dancer.
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7.12 Conclusion

This chapter has described a general approach to video segmentation. While reasonable seg-

mentation performance has been achieved, obtaining a result suitable for edit point detection

has proven difficult, partly because of the inherent difficulty of the task and the kind of video

considered, and partly because of the high parameter count and computational cost of the

algorithm.

The question arises of whether further improvements within this scheme could yield much

better results (e.g. more robust motion estimation, incorporating explicit occlusion / uncover-

ing modelling, adjustment of the various parameters, non-parametric representation of vector

distributions), or whether a different kind of segmentation approach entirely is called for. For

example, a temporally smooth segmentation on the basis of motion / no motion could be suffi-

cient to target sharpness and vector magnitude analysis on the most informative regions of the

video; this is a simplification of the present approach. Alternatively, higher level modelling could

be incorporated, for example explicit models of human motion, which introduces constraints on

the spatial relationship of arms, legs, head, etc. [113]. This could help segmentation performance

in the specific area of dance video, at the cost of generality.

Video segmentation remains one of the most interesting (and challenging) of video analysis

tasks. However, the difficulty and computational cost of segmentation, coupled with the effec-

tiveness of the simpler low-level techniques described in the previous chapter, suggest that at

the present these low-level techniques constitute the most appropriate approach to edit point

detection.

8
Applications of Edit Point Detection

Chapter 6 of this thesis described an approach to the detection of edit points in dance video. In

this chapter, some applications exploiting the detected edit points are described.

8.1 Interactive Keyframe Selection

Chapter 6 described a method for combined analysis of a number of low-level traces. The results

of the analysis of each trace are combined using a weight assigned to each trace. The combined

analysis can then be used to generate a display of the top N edit points, i.e. the frames having

the highest N values of EP (n).

In that chapter, the weights used for each trace corresponded to the area under the ROC curve

for peak classification in that trace. An alternative approach is to allow interactive adjustment of

the weights, with a display showing the top N edit points being updated in real time in response

to the selection. This offers a means of browsing keyframes, or significant phrase transitions

in a dance, using reasonably intuitive concepts such as sharpness and the spatial extent of the

foreground.

Rather than develop such a system in software, a number of videos have been prepared which

illustrate how this application would work if implemented. Figure 8.1 shows some still images

from one such video, demonstrating edit point selection in the maleDancer2 sequence.

As described in chapter 6, the traces used for edit point detection fall into five types: the

motion trace; the foreground bounding box traces; traces resulting from analysis of the local

motion vector field; the sharpness traces ; and the audio energy trace. Each of these trace groups

218
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is assigned a weight over the range 10−2 to 102. The values used are superimposed on the image

selection graphically as blue vertical lines, which correspond from left to right to the groups

listed above.

Each of figures 8.1 (a)-(e) shows the top twelve edit points detected in the sequence for a

given choice of weights. In figure 8.1 (a) all the weights are equal, at 100. Figures 8.1 (b) and (c)

show how weighting the motion trace by 10−2 and 102 respectively affects the resulting set of

edit points. Adjustments to this weight affect how much influence the reduction in the amount

of local motion has on edit point detection, and as such it is difficult to see the effect of changing

this weight using still images.

Figure 8.1 (d) illustrates the effect of setting the weight applied to the bounding box traces

to 102. Here the edit point detection criterion becomes that the width or height bounding box

should be at a local minimum or maximum. The edit points detected all depict poses in which

the dancer’s hands are outstretched, creating a local maximum in the bounding box height or

width, or poses in which the dancer’s hands cross in front of his body, creating a local minimum.

In figure 8.1 (e) shows the edit points selected when a weight of 102 is applied to the freqsharp

trace. Here, none of the selected frames exhibit any motion blur, as expected.

8.2 Motion Phrase Image

The edit points detected in dance video should correspond to the start and end points of phrases

in dance video. This creates the possibility of using the Motion History Image (MHI) [33] tech-

nique described for snooker shot summaries in chapter 5 to create summary images representing

each dance phrase, and hence a summary of the dance video itself. The effect is somewhat

similar to the ‘salient stills’ process developed by Teodosio et al. [189, 215, 216, 300]. However,

that work does not address the selection of frames from which to generate the summary image.

By contrast, in this work the use of edit point detection means that the summary images created

correspond to meaningful episodes (dance phrases) in the video.

8.2.1 MHI generation with global motion

Consider that two successive edit point frames have been identified at times T1 and T2. The

first stage in generating a summary image for this dance phrase consists in finding the MHI

for this section of the video. In the case of snooker footage, the most informative shots were

filmed with a static camera. However, in dance video, some camera motion is common, and

thus compensation for global motion must be introduced. Figure 8.2 illustrates the essential

algorithm used to generate motion compensated MHIs.

The algorithm operates on each pair of frames {i− 1, i} for i ∈ T1 + 1 . . . T2. For each pair,

the global motion estimation technique described in chapter 2 is used to find the global motion

parameters between the two frames. These parameters are then used to find the Displaced
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(a) All traces weighted at 100.

(b) motion weight at 10−2.

Figure 8.1: Interactive keyframe selection
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(c) motion weight at 102.

(d) Bounding box traces weights at 102.

Figure 8.1: Interactive keyframe selection
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(e) freqsharp trace weighted at 102

Figure 8.1: Interactive keyframe selection

Figure 8.2: MHI generation with global motion compensation.
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(a) Frame 312. (b) Frame 335. (c) MHI for frames 312—335.

(d) MHI overlaid on composite. (e) Foreground map. (f) Refined MHI overlaid on compos-

ite.

Figure 8.3: Dance summary image generation using the MHI.

Frame Difference (DFD) between the two frames. The parameters are also used to compensate

the existing MHI to align it with the present frame. The DFD image is then used to update the

MHI, according to

MHI(x, t) =







255 if DFD(x) > τm

max(0,MHI(x, t− 1) − (255 − υ)/(T2 − T1 + 1)) otherwise
(8.1)

where υ is the value to be assigned to the oldest motion regions in the MHI; υ = 64 is used here.

Figures 8.3 (a) - (c) illustrate the start and end frames of a dance phrase and the corresponding

MHI.

Figure 8.3 (d) shows the result of overlaying the MHI on a composite image, generated

according to

CR(x) = 0.3IRT1
(x) + 0.7IRT2

(x) +MHI(x) (8.2)

CG(x) = 0.3IGT1
(x) + 0.7IGT2

(x) (8.3)

CB(x) = 0.3IBT1
(x) + 0.7IBT2

(x)

where C{R,G,B} are the red, green, and blue channels of the composite image, and I
{R,G,B}
T are

the channels of the video image at time T .
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8.2.2 Finding the foreground map of a video frame

While this image does convey the nature of the phrase represented, the overlaid MHI obscures

the image of the dancer, reducing the aesthetic effect.

To mitigate this problem, an explicit foreground map can be found for frame T2, and the

MHI set to zero in the identified foreground regions. The bounding box of the foreground region

in frame T2 is known as a result of the refined global motion estimation described in chapter 2.

It is then necessary to find a frame in which the foreground bounding box does not overlap

with the foreground box of frame T2. The bounding box co-ordinates of frame t are denoted

BBtt, BBbt, BBlt, BBrt for the top, bottom, left, and right edges. These co-ordinates must

be transformed to account for any global motion between frames t and T2, using

[
BBt′t, BBl

′
t, 1
]

= [BBtt, BBlt, 1]Mt,T2 (8.4)
[
BBb′t, BBr

′
t, 1
]

= [BBbt, BBrt, 1] Mt,T2 (8.5)

where Mt,T2 collects the global motion parameters transforming frame t to frame T2.

The bounding box of frame t is non-overlapping with that of frame T2 if

(
BBb′t > BBtT2

)
∨
(
BBt′t < BBbT2

)
∨
(
BBl′t > BBrT2

)
∨
(
BBr′t < BBlT2

)
(8.6)

Frames T2 ± 1, T2 ± 2, . . . are evaluated to find the frame closest to T2 satisfying 8.6. When such

a frame t′ is found, the global motion parameters Mt′,T2 are used to transform It′ to I ′t′ , aligned

with frame T2. The foreground map FT2 is given by

FT2(x) =

{

1 if |I ′t′(x) − IT2(x)| > τ ∧ x ∈ BT2

0 otherwise
(8.7)

where BT2 is the set of sites inside the foreground bounding box of frame T2. To fill in any small

holes in the map, an image closing operation is applied to F (x), using a circular structuring

element five pixels in diameter.

Figure 8.3 (e) shows a foreground map generated by this method. Some background detail has

been detected as foreground here. This is due to the difficulty of long-range motion estimation

in this sequence. Figure 8.3 (f) shows how setting the MHI to zero where the foreground map

is nonzero improves the appearance of the dance phrase image.

8.2.3 Artificial rear-curtain effect

Using the MHI for dance phrase summary images requires explicit motion detection, and there-

fore relies on on the determination of some detection threshold . An alternative approach which

avoids explicit motion detection is to composite all the frames comprising the dance phrase

together, after compensating for global motion. The aim here is to emulate the effect produced

by rear-curtain sync flash photography [125]. Here the camera flash is set to fire just before the

shutter closes, rather than firing when the shutter opens. This produces a motion blur effect
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(a) An example of rear-curtain-sync

photography [223].

(b) Composite of foreground regions. (c) Final summary image.

Figure 8.4: The artifical rear-curtain effect summary image for a dance phrase.

leading into a sharp final position. The effect is commonly used in photography of dance and

other moving subjects. An example of a photograph produced using rear-curtain sync is shown

in figure 8.4 (a).

To emulate this effect, it is desired to make a composite of all the frames in the dance phrase.

Simply averaging the frames will not work, however. This is because a dance phrase may consist

of thirty or forty frames, with most of the foreground region non-overlapping over these frames.

At a site x containing foreground data in only one frame t′, for example, the value at x averaged

over all frames will be ((N − 1)B(x) + Ft′(x)) /N , where N = T2 − T1 + 1 is the length of the

dance phrase. For dance phrases of moderate length, the site x will be effectively background,

and the motion blur effect will be lost.

Rather than composite all the frames in the dance phrase, only the foreground regions are

composited. The foreground maps for each frame f ∈ {T1 . . . T2} are found as described above.

Define the foreground count image C(x) by

C(x) = max



1,
∑

t∈T1 ...T2

Ft(x)



 (8.8)

The foreground composite image is then

J(x) =

(∑

t∈T1...T2
(It(x)Ft(x))

)

C(x)
(8.9)

Figure 8.4 (b) shows such a foreground composite image.

To ensure that the final pose of the dance phrase is clearly visible in the final motion phrase

image, the foreground region of frame T2 is superimposed on the foreground composite. Those

regions of the frame not included in the foreground composite are filled in with the background
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of frame T2. Thus the final image, K(x), is given by

K(x) =

{

J(x) if ∃t.Ft(x) = 1 ∧ FT2(x) = 0

IT2(x) otherwise
(8.10)

Figure 8.4 (c) shows an example of the final foreground composite.

Figure 8.5 illustrates twelve successive phrases from the greenDancer sequence summarised

by this method. While the general nature of the dance is preserved, it is clear that in a number

of cases the extraction of the foreground has been less than exact. This is due to the difficulty of

long-range global motion estimation in this sequence, and also due to the fact that a single fixed

threshold for foreground / background segmentation is not always optimal. More sophisticated

methods for addressing these problems have been presented, which could be expected to improve

the quality of the resulting images considerably [181,221]. Incorporation of these methods into

the summary generation mechanism is left for future work.

8.3 Frame Synchronisation

The edit point detection techniques described have focused particularly on analysis of dance

footage; often this dance is performed to musical accompaniment. Given a new source of music

and a means of identifying the beat times in this music, the video can be adaptively retimed so

as to bring the edit point frames into alignment with these beat times. The effect in the new

video is of the same dance being performed to a different tune.

8.3.1 Related Work

Automatic music video creation is an application area beginning to gain ground in the research

community at large. However, most of the previously published work is geared towards music-

synchronized video editing, in particular to condense large bodies of less-than-compelling home

movie footage into a more watchable (and much shorter) music video. One of the earlier publica-

tions in this vein describes work done at FX Palo Alto Laboratory [111]. Here, the quality of the

user’s home video is assessed via an over-exposure metric and camera stability, and temporally

segmented into ‘clips’—contiguous regions of high quality. Changepoints in the audio track are

then localised using a self-similarity measure based on the STFT, and transitions between clips

are timed to coincide with these changepoints.

Xian-Sheng Hua et al.at Microsoft Research Asia have described similar systems in several

publications [152–154]. These are also essentially automated editing systems, in which, for exam-

ple, the frequency of clip transitions (shot changes) is related to the tempo of the accompanying

music. The system described in [153] also uses content analysis to match scenes with high

motion content to fast music, and to ensure that similar scenes in the video are matched with

similar passages in the music.
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(a) Frames 1 - 66. (b) Frames 66 - 89. (c) Frames 89 - 127.

(d) Frames 127 - 184. (e) Frames 184 - 208. (f) Frames 208 - 220.

(g) Frames 220 - 244. (h) Frames 244 - 266. (i) Frames 266 - 290.

(j) Frames 290 - 312. (k) Frames 312 - 343. (l) Frames 343 - 356.

Figure 8.5: Summary images for the first twelve dance phrases in the greenDancer sequence.
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Similar ideas are beginning to appear in commercially available non-linear editing systems.

Muvee Technologies [227] provide a rule-based system to emulate various video editing styles

when applied to a collection of home video footage, including a ‘music video’ style in which

transitions and effects are synchronised with the beat; YesVideo [337] offer a similar technology

in their analogue to DVD video transfer service. Pinnacle’s Studio 9 product [253] incorporates

a ‘SmartMovie’ feature which automatically arranges a selection of clips in sympathy with

a soundtrack—again, transitions and effects are automatically synchronised to the beat of the

chosen music. As these are commercially released systems, details of the algorithms they employ

are not readily available.

While this system targets a similar general application area, the approach to music video

generation is quite different. Rather than focusing on editing, the concern here is with synchro-

nising one specific clip to a given piece of music, based on deeper information in the content. One

commercially available product similar in spirit is Microsoft’s ‘Plus! Digital Media Edition’ [220],

which includes an application called ‘Plus! Dancers’. This uses data acquired from live dancers

via motion capture techniques to animate a rendered character such that it dances to in time to

the music that the user is playing. Again, it is difficult to assess this product quantitatively, as

the algorithm employed is not public; however it is of interest as a computer graphics approach

to the same aesthetic end result that we seek using video processing techniques.

Other related work includes that of Bregler et al. [45] and that of Ezzat et al. [102], on

synchronising video lip movements to recorded speech. Also of interest is the work of Suzuki et

al. [290,291] on ‘Multimedia Montage’, describing various systems for, and theoretical approaches

to, video editing for audio-visual synchronisation, using structures informed by music theory.

8.3.2 Beat detection

The first stage in achieving this resynchronisation effect is the detection of the beat times

in the new music. Where video is being prepared to accompany a piece under composition,

the exact beat times may be available, for example as MIDI data. For existing music, beat

detection must be applied. A number of methods for beat detection have been described in

the literature [83,123,124,270]. For this work, the algorithm first described by Scheirer [269] is

used. The audio signal is split into six frequency bands, and each bandpass signal is fed into a

bank of 100 tuned resonators. The resonance frequency showing the strongest response over all

six frequency bands is then chosen as corresponding to the tempo of the music. This approach

was chosen as it is suitable for on-line beat detection in real-time, is readily implemented, and

generates good results for most music signals with a steady beat.

8.3.3 Retiming the dance phrase

Given the edit points in the input video, and the beat points in the new piece of music, the idea

is to warp the timeline such that visual edit points coincide with the audio beats in the music.
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The number of frames of the output video to be generated to the time of the next beat in the

new music track, designated FBP , is therefore known. The number of input video frames to the

next edit point FEP is also known, having been found using the techniques described above.

Figure 8.6 illustrates the situation.

Input video:

Output video:

Current input / output frames

EP

BP BP

EP

FBP output frames to next Beat Point

FEP input frames to next Edit Point

Figure 8.6: Synchronising edit points with beat points

Consider that an edit point E1 has been emitted to coincide with a beat at time B1. The

next edit point is at time E2, and the next beat point at time B2. The frames E1 . . . E2 in

the input video must be mapped to the frames B1 . . . B2 in the output video. One of three

strategies can be employed to achieve this. Using linear retiming, output frames O(B1 + n) for

n ∈ {1 . . . B2 −B1} are copied from input frames I(n′) according to

O(B1 + n) = I

(

E1 + n
E2 − E1

B2 −B1

)

(8.11)

This scheme is illustrated in figure 8.7 (a).

The perceived strength of a synchronised event can be increased by repeating the edit point

frame for a small number, τe, of output frames, and resuming input processing τe frames after

the edit point. This accentuation effect is referred to as stop and skip, and is governed by

O(B1 + n) =

{

I(E1) if n < τe

I(E1 + nE2−E1
B2−B1 ) otherwise

(8.12)

Figure 8.7 (b) shows the mapping from input frames to output frames with this approach, where

τe = 4.

Rather than using linear retiming, an exponential scheme can be employed. Here input

frames are mapped to output frames by

O(B1 + n) = I

(

E1 + exp

(

n log

(
E2 − E1

B2 −B1

)))

(8.13)
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(a) Linear retiming.
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(b) Linear retiming with a pause to

emphasise the edit point (stop and

skip).

BP1 BP2
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Output frames
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(c) Exponential retiming.

Figure 8.7: Retiming strategies for dance phrase video. The dashed line shows the ideal retiming.

The blue circles show the frames actually emitted.

as shown in figure 8.7 (c). This introduces a very strong acceleration towards the edit point, and

a sudden deceleration afterward, which emphasises the edit point very strongly and introduces

a markedly artificial feel to the motion of the dance.

Regardless of the retiming approach used, some threshold on the maximum permitted degree

of video compression and dilation is required. Retiming is only applied if 1
3 ≤ E2−E1

B2−B1 ≤ 3.

If E2−E1
B2−B1 < 1

3 , the next edit point is skipped. When E2−E1
B2−B1 > 3, input frames are output

sequentially until E2−E1
B2−B1 < 3.

No temporal interpolation is used when retiming the video; wherever an input frame at a

non-integer offset n is required, I(bn + 0.5c) is used. A smoother effect could be achieved by

using a more sophisticated retiming algorithm.

8.3.4 Final points

The length of the generated video can be increased by introducing a looping effect. When looping

is activated, frames are taken from the input video in reverse order, synchronising to the previous

edit point rather than the next. After an edit point frame has been emitted synchronised with

a beat frame, looping may be activated with some probability Pl. A value of Pl = 0.4 is found

to work well in most sequences, in the sense that the length of the dance is increased but the

effect of the repetitions introduced is not tedious.

A number of examples of videos generated using this fully automated application are provided

on the accompanying DVD. They show that despite the numerically moderate performance of

the edit point detection process, the resulting effect is convincing. The technique has been

implemented in a real-time application in which video is synchronised to a live incoming music

stream. This application has proven popular for generating visuals synchronised to a DJ in

nightclubs.
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8.4 Conclusion

In this chapter, a number of applications of edit point detection in dance video have been

described. In each case the implementation described is effectively at the proof-of-concept level.

However, the promise of these techniques for high-level interaction with dance video is clear.

The dance re-synchronisation technique in particular has potential in music video creation, in

personal media players, and in the real-time projection of video to accompany live performance.

9
Conclusion

The central thrust of this work has been to show how a number of diverse video processing

problems are conceptually concerned with discontinuity detection. In all cases, the essential

approach is to obtain some targeted description of the video, and then to detect discontinuities in

this description. The application-specific aspect is the description of the video, which determines

the generality and semantic level of the events encompassed.

The first application of discontinuity analysis described is shot change detection. Here the

description of the video is in terms of frame-to-frame similarity. Discontinuities in the dissim-

ilarity signal then inform shot change detection. The bulk of chapter 3 was concerned with

the varieties of frame similarity measure—or ways of describing frame similarity—that have

been deployed for this problem. It was described how increasingly researchers are focusing on

the detection of discontinuities in the similarity description, as being of equal importance to

the similarity measure itself. The Bayesian paradigm has been particularly fruitful in this re-

gard. Chapter 4 then described refinements for cut detection in difficult sequences and dissolve

detection.

The work on analysis of snooker video has a similar process of description and discontinuity

detection. In particular, the event detection algorithm based on region monitoring has sympa-

thies with shot change detection, being based on similarity analysis within a particular region

of the frame. Explicit extraction of ball tracks is also an instance of targeted video description,

and it was outlined how the discontinuities in these tracks are informative regarding events in

the snooker game.

The automatic detection of edit points in dance video is an entirely new application area in

232
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digital video processing. The treatment presented here encompasses the fusion of a number of

frame-level descriptions of motion, along with an investigation of video segmentation for edit

point detection. A particular success of the low level approach is that the same framework

for discontinuity detection, based on Bayesian classification of peak characteristics, was found

effective for traces generated by a variety of analysis techniques. The examples of resynchronised

dance video on the accompanying DVD demonstrate that compelling effects can be realised

through exploitation of these edit points.

Motion based segmentation of dance sequences was considered as a diagnostic tool for making

the percussive movement detector more robust. This work differs from previous approaches to

segmentation in that ensuring that the extracted segments are smooth and contiguous over a long

period of time is a particular concern here. What makes this difficult is that objects are modelled

in a low level, piecewise manner, rather than using any explicit modelling, for example describing

the human body. Several ideas for encouraging this temporal consistency have been introduced

here. The idea of using magnitude and angle to parameterise motion clusters is also new to

this work. It has been shown that with this parameterisation, segments containing pathological

motion can be isolated, which would otherwise be confused with stationary background.

9.1 Issues

Perfect shot change detection remains an elusive goal, and the area continues to attract research

attention. The problem of effects used in shot changes in particular remains a challenge. Further

investigation of the dissolve modelling approach described here is warranted—in particular, a

more complete determination of the statistics of the α-curves described there, through automated

synthesis of a large number of dissolves, would be of use. Another area worthy of investigation

is whether the spatial evolution of the error map arising in this algorithm could be analysed to

inform dissolve detection.

The work in chapter 5 presents techniques that constitute a set of primitives for snooker

analysis. As described in that chapter, other researchers have demonstrated how those tools can

be generalised for analysis of other sports, and integrated into systems for sports analysis and

retrieval. One aspect not yet addressed is an evaluation of how the ‘ball pot’ and ‘near miss’

event detection system, based on region monitoring, could be applied to sports with similar

events such as basketball and golf.

Chapter 6 takes a very broad view of low-level edit point detection, and each of the frame

analysis primitives employed there could be explored in more depth. More sophisticated ap-

proaches to motion detection, global and local motion estimation, and motion blur detection,

would all improve edit point detection in this framework. One possible weak point of the frame-

work itself is the ‘hard’ nature of the initial parsing of each trace into peaks; robustness could be

perhaps be improved by using a softer, probabilistic approach to peak extraction and the detec-

tion of minima and maxima in the traces. Analysis of a larger corpus of varied material would
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be informative, in particular in assessing how the edit point detection framework generalises to

non-dance footage.

The work on video segmentation described in chapter 7 establishes that maintaining temporal

coherence in dance footage segmentation is a difficult undertaking, due chiefly to the large

displacements and non-translational motion typical of dance video. A key requirement here is

to avoid or recover from over-segmentation to improve the processing speed; this suggests that

further investigation into the incorporation of model merging and motion histories with each

model is warranted. A multi-resolution approach could also be useful in this regard.

It is interesting that the segmentation output did not markedly improve the ‘percussive visual

beat’ system. This is simply because of the difficulty of extracting semantic meaning without

the application of some model connecting the low level features to the semantics. It would be

useful therefore to consider connecting the various segments within a model of the human form

and thus inferring further information about the motion explicitly as human dance, for example.

The various applications shown in chapter 8 remain at the prototype stage. Of particular

interest here is the nature of the most appropriate user interface for video resynchronisation. The

exploitation of higher level music analysis (i.e. rhythm analysis as opposed to tempo analysis)

is also worthy of investigation.

9.2 Final remarks

All of the work conducted in this thesis was performed using real data. As such it highlights that

motion analysis must move toward acknowledging the real phenomena that cause algorithms to

fail, such as motion blur. This work has shown that using relatively low level tools the presence

of blur can be connected to some semantics concerned with movement. More generally, this

approach of explicitly acknowledging the hard problems confounding motion analysis, such as

pathological motion, transparent motion, and shot changes involving visual effects, provides a

rich body of future work.



A
Derivation of the optimal alpha value for dissolve

modelling

In chapter 4, a method for characterising a dissolve region in video using an α-curve was de-

scribed. The α-value for frame t given two template frames IT0 , IT1 is governed by

p(α|It) ∝ exp(−
∑

x

[
It(x) − IM(α)(x)

]2
) (A.1)

The maximum-likelihood value of alpha given It can be estimated by solving

d

dα
p(α|It) = 0 (A.2)

This is equivalent to solving

d

dα

∑

x

[
It(x) − IM(α)(x)

]2
= 0 (A.3)

Differentiating yields

2
∑

x

[(
It(x) − IM(α)(x)

)
(−IT0(x) + IT1(x))

]
= 0 (A.4)

Let ∇T0,T1(x) = IT0(x) − IT1(x). Then
∑

x

[−∇T0,T1(x)It(x) + ∇T0,T1(x)αIT0(x) + ∇T0,T1(x)(1 − α)IT1(x)] = 0 (A.5)

∑

x

[−∇T0,T1(x) + ∇T0,T1(x)αIT0(x) + ∇T0,T1(x)IT1(x) − α∇T0,T1(x)IT1(x)] = 0 (A.6)

∑

x

[α∇T0,T1(x)(IT0(x) − IT1(x)) −∇T0,T1(x)IT1(x) + ∇T0,T1(x)IT1(x)] = 0 (A.7)
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Rearranging:

α
∑

x

[∇T0,T1(x)(IT0(x) − IT1(x))] =
∑

x

[∇T0,T1(x)IT1(x) −∇T0,T1(x)IT1(x)] (A.8)

which yields a closed form solution for α:

α =

∑

x [∇T0,T1(x)It(x) −∇T0,T1(x)IT1(x)]
∑

x

[

∇2
T0,T1

(x)
] (A.9)



B
Sequence Sources

The greenDancer, maleDancer, maleDancer2, and greenMale sequences come from the DVD

‘Flamenco’, directed by Carlos Saura, released by New Yorker Video in 1994.

The ballet2 and ballet1 sequences are from the DVD release of ‘The Sleeping Beauty’, per-

formed by the Birmingham Royal Ballet, released in 2003.

The coconut sequence is from the DVD ‘Monty Python and The Holy Grail (Special Edition)’,

released by Sony Pictures in 2001.

237

C
Results

C.1 The Foreground Bounding Box

C.1.1 Minima Detection

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 242 527 59 0.31 0.80 0.56 1 0.55 5.62

Ms 180 213 121 0.46 0.60 0.53 0 0.26 8.33

Mr 243 520 58 0.32 0.81 0.56 0 0.44 5.93

Mrs 179 204 122 0.47 0.59 0.53 0 -0.02 8.79

With smoothing

M̂ 202 291 99 0.41 0.67 0.54 0 -0.03 7.17

M̂s 167 180 134 0.48 0.55 0.52 0 -0.33 8.74

M̂r 201 275 100 0.42 0.67 0.55 0 0.04 8.19

M̂rs 161 168 140 0.49 0.53 0.51 0 -0.07 9.55

Table C.1: Left
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#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 249 596 52 0.29 0.83 0.56 1 0.42 4.61

Ms 186 238 115 0.44 0.62 0.53 1 0.53 6.89

Mr 245 597 56 0.29 0.81 0.55 1 0.40 4.49

Mrs 195 238 106 0.45 0.65 0.55 0 0.44 6.67

With smoothing

M̂ 205 286 96 0.42 0.68 0.55 1 0.56 6.25

M̂s 176 164 125 0.52 0.58 0.55 1 0.36 7.74

M̂r 210 302 91 0.41 0.70 0.55 1 0.55 6.10

M̂rs 178 167 123 0.52 0.59 0.55 1 0.61 6.93

Table C.2: Right

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 264 675 37 0.28 0.88 0.58 0 0.29 4.38

Ms 197 246 104 0.44 0.65 0.55 0 0.02 7.52

Mr 262 638 39 0.29 0.87 0.58 0 0.29 4.75

Mrs 181 219 120 0.45 0.60 0.53 0 -0.02 8.03

With smoothing

M̂ 261 479 40 0.35 0.87 0.61 0 -0.22 5.84

M̂s 216 239 85 0.47 0.72 0.60 -1 -0.63 6.73

M̂r 251 447 50 0.36 0.83 0.60 0 -0.10 6.68

M̂rs 206 214 95 0.49 0.68 0.59 -1 -0.26 8.64

Table C.3: Bottom
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#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 252 589 49 0.30 0.84 0.57 0 0.06 3.84

Ms 197 212 104 0.48 0.65 0.57 0 -0.09 5.26

Mr 248 563 53 0.31 0.82 0.56 0 0.01 3.72

Mrs 192 193 109 0.50 0.64 0.57 0 -0.17 5.03

With smoothing

M̂ 227 263 74 0.46 0.75 0.61 0 0.42 5.87

M̂s 190 141 111 0.57 0.63 0.60 0 0.27 6.48

M̂r 231 256 70 0.47 0.77 0.62 0 0.30 5.83

M̂rs 195 139 106 0.58 0.65 0.62 0 0.16 6.58

Table C.4: Top

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 265 647 36 0.29 0.88 0.59 1 0.52 4.10

Ms 214 255 87 0.46 0.71 0.58 1 0.64 6.64

Mr 265 637 36 0.29 0.88 0.59 0 0.46 4.02

Mrs 214 255 87 0.46 0.71 0.58 1 0.56 6.29

With smoothing

M̂ 221 318 80 0.41 0.73 0.57 1 0.57 6.81

M̂s 180 195 121 0.48 0.60 0.54 1 0.65 7.33

M̂r 235 309 66 0.43 0.78 0.61 1 0.52 6.38

M̂rs 192 179 109 0.52 0.64 0.58 1 0.86 7.10

Table C.5: Width
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#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 287 798 14 0.26 0.95 0.61 1 0.45 2.61

Ms 235 297 66 0.44 0.78 0.61 0 0.29 5.47

Mr 287 732 14 0.28 0.95 0.62 0 0.33 2.60

Mrs 234 262 67 0.47 0.78 0.62 0 0.12 5.29

With smoothing

M̂ 257 367 44 0.41 0.85 0.63 1 0.49 4.95

M̂s 215 198 86 0.52 0.71 0.62 1 0.47 6.48

M̂r 267 371 34 0.42 0.89 0.65 1 0.39 4.74

M̂rs 228 192 73 0.54 0.76 0.65 0 0.14 6.03

Table C.6: Height
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C.1.2 Peak Classification
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Figure C.1: Peak statistics for the bbminx trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.2: Peak statistics for the bbmaxx trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.3: Peak statistics for the bbminy trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.4: Peak statistics for the bbmaxy trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.



C.1. The Foreground Bounding Box 247

0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent)

N = 166

(a)

0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent)

N = 213

(b)

−5 0 5
0

0.05

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent / peak ascent)

N = 166

(c)

−5 0 5
0

0.05

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent / peak ascent)

N = 213

(d)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

F
ra

ct
io

n 
of

 p
ea

ks

Relative peak descent

N = 166

(e)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

F
ra

ct
io

n 
of

 p
ea

ks

Relative peak descent

N = 213

(f)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

F
ra

ct
io

n 
of

 p
ea

ks

Noise score

N = 166

(g)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

F
ra

ct
io

n 
of

 p
ea

ks

Noise score

N = 213

(h)

Figure C.5: Peak statistics for the bbwidth trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.6: Peak statistics for the bbheight trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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C.2 Vector Field

C.2.1 Minima Detection

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 297 1121 4 0.21 0.99 0.60 1 0.43 1.87

Ms 240 278 61 0.46 0.80 0.63 1 0.70 4.99

Mr 298 1068 3 0.22 0.99 0.60 0 0.27 2.05

Mrs 256 309 45 0.45 0.85 0.65 0 0.25 4.75

With smoothing

M̂ 274 661 27 0.29 0.91 0.60 1 0.64 3.19

M̂s 247 238 54 0.51 0.82 0.66 1 0.62 4.68

M̂r 274 636 27 0.30 0.91 0.61 0 0.47 3.35

M̂rs 246 200 55 0.55 0.82 0.68 1 0.38 4.59

Table C.7: vfM

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 293 983 8 0.23 0.97 0.60 1 0.44 2.34

Ms 260 383 41 0.40 0.86 0.63 1 0.56 4.12

Mr 294 910 7 0.24 0.98 0.61 0 0.12 2.26

Mrs 263 305 38 0.46 0.87 0.67 0 0.24 4.07

With smoothing

M̂ 271 455 30 0.37 0.90 0.64 1 0.70 3.40

M̂s 244 240 57 0.50 0.81 0.66 1 0.50 4.60

M̂r 275 422 26 0.39 0.91 0.65 1 0.49 3.93

M̂rs 245 216 56 0.53 0.81 0.67 1 0.40 4.97

Table C.8: vfσ2
M

C.2. Vector Field 250

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 294 1261 7 0.19 0.98 0.58 0 0.33 2.30

Ms 258 539 43 0.32 0.86 0.59 0 0.28 5.84

Mr 293 1174 8 0.20 0.97 0.59 0 0.27 2.57

Mrs 257 455 44 0.36 0.85 0.61 0 0.11 5.77

With smoothing

M̂ 270 628 31 0.30 0.90 0.60 0.5 0.30 4.96

M̂s 246 341 55 0.42 0.82 0.62 1 0.43 6.35

M̂r 266 602 35 0.31 0.88 0.60 0 0.33 4.58

M̂rs 246 305 55 0.45 0.82 0.63 0.5 0.38 6.06

Table C.9: vfx

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 297 1072 4 0.22 0.99 0.60 0 0.44 2.31

Ms 255 382 46 0.40 0.85 0.62 1 0.56 4.70

Mr 298 1009 3 0.23 0.99 0.61 0 0.24 2.01

Mrs 252 314 49 0.45 0.84 0.64 0 0.03 4.38

With smoothing

M̂ 273 537 28 0.34 0.91 0.62 1 0.68 3.69

M̂s 239 257 62 0.48 0.79 0.64 1 0.65 4.40

M̂r 280 514 21 0.35 0.93 0.64 1 0.32 3.85

M̂rs 245 225 56 0.52 0.81 0.67 1 0.48 4.79

Table C.10: vfσ2
x
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#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 299 1195 2 0.20 0.99 0.60 0 0.46 1.99

Ms 277 515 24 0.35 0.92 0.64 0 0.28 4.72

Mr 300 1112 1 0.21 1.00 0.60 0 0.30 1.96

Mrs 270 430 31 0.39 0.90 0.64 0 0.23 4.91

With smoothing

M̂ 286 578 15 0.33 0.95 0.64 1 0.50 4.33

M̂s 265 321 36 0.45 0.88 0.67 1 0.48 5.33

M̂r 283 561 18 0.34 0.94 0.64 0 0.18 4.05

M̂rs 261 288 40 0.48 0.87 0.67 0 0.22 5.79

Table C.11: vfy

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 296 1069 5 0.22 0.98 0.60 1 0.35 1.99

Ms 268 398 33 0.40 0.89 0.65 1 0.30 4.71

Mr 298 992 3 0.23 0.99 0.61 0 0.07 2.15

Mrs 260 340 41 0.43 0.86 0.65 0 -0.03 4.28

With smoothing

M̂ 275 516 26 0.35 0.91 0.63 1 0.64 3.09

M̂s 246 246 55 0.50 0.82 0.66 1 0.71 4.41

M̂r 278 478 23 0.37 0.92 0.65 0 0.27 3.56

M̂rs 257 227 44 0.53 0.85 0.69 0 0.32 4.60

Table C.12: vfσ2
y

C.2. Vector Field 252

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 301 1456 0 0.17 1.00 0.59 0 0.26 1.58

Ms 280 637 21 0.31 0.93 0.62 0 0.11 5.15

Mr 301 1364 0 0.18 1.00 0.59 0 0.28 1.94

Mrs 273 543 28 0.33 0.91 0.62 0 0.28 5.87

With smoothing

M̂ 290 762 11 0.28 0.96 0.62 0 0.04 4.54

M̂s 261 383 40 0.41 0.87 0.64 0 -0.20 6.51

M̂r 294 722 7 0.29 0.98 0.63 0 0.19 4.97

M̂rs 246 352 55 0.41 0.82 0.61 0 -0.00 7.18

Table C.13: vfθ
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C.2.2 Peak Classification Distributions

C.2. Vector Field 254
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Figure C.7: Peak statistics for the vfM trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.8: Peak statistics for the vfx trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.9: Peak statistics for the vfy trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.10: Peak statistics for the vfθ trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.11: Peak statistics for the vfσ2
M

trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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Figure C.12: Peak statistics for vfσ2
x

trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.

C.2. Vector Field 260

−10 −5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent)

N = 280

(a)

−10 −5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent)

N = 203

(b)

−5 0 5
0

0.02

0.04

0.06

0.08

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent / peak ascent)

N = 280

(c)

−5 0 5
0

0.02

0.04

0.06

0.08

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Log (peak descent / peak ascent)

N = 203

(d)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

F
ra

ct
io

n 
of

 p
ea

ks

Relative peak descent

N = 280

(e)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

F
ra

ct
io

n 
of

 p
ea

ks

Relative peak descent

N = 203

(f)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Noise score

N = 280

(g)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

F
ra

ct
io

n 
of

 p
ea

ks

Noise score

N = 203

(h)

Figure C.13: Peak statistics for the vfσ2
y

trace, from the greenDancer, maleDancer, and ballet2

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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C.3 Sharpness

C.3.1 Minima Detection

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 168 540 14 0.24 0.92 0.58 0 0.24 5.38

Ms 112 240 70 0.32 0.62 0.47 0 -0.05 8.21

Mr 159 542 23 0.23 0.87 0.55 0 -0.06 5.21

Mrs 112 247 70 0.31 0.62 0.46 0 0.29 8.12

With smoothing

M̂ 128 304 54 0.30 0.70 0.50 0 -0.25 7.01

M̂s 117 224 65 0.34 0.64 0.49 0 -0.42 7.78

M̂r 128 319 54 0.29 0.70 0.49 0 -0.23 6.81

M̂rs 103 228 79 0.31 0.57 0.44 0 0.07 7.22

Table C.14: SumFFT

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 106 451 13 0.19 0.89 0.54 0 0.41 1.56

Ms 102 280 17 0.27 0.86 0.56 1 0.31 4.02

Mr 106 408 13 0.21 0.89 0.55 0 0.48 2.21

Mrs 99 228 20 0.30 0.83 0.57 0 0.33 5.41

With smoothing

M̂ 93 139 26 0.40 0.78 0.59 1 0.20 6.49

M̂s 73 78 46 0.48 0.61 0.55 0 -0.33 7.64

M̂r 91 155 28 0.37 0.76 0.57 1 0.34 6.36

M̂rs 78 81 41 0.49 0.66 0.57 0 -0.04 8.06

Table C.15: Interlace
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C.3.2 Peak Classification
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Figure C.14: Peak statistics for the freqinterlace trace, from the ballet2 sequence. Desired peaks,

corresponding to motion events, are shown on the left, while the figures on the right illustrate

false alarms. The Parzen estimations of the densities are also shown.
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Figure C.15: Peak statistics for the freqsharp trace, from the greenDancer, and maleDancer

sequences combined. Desired peaks, corresponding to motion events, are shown on the left,

while the figures on the right illustrate false alarms. The Parzen estimations of the densities are

also shown.
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C.4 Audio

C.4.1 Maxima Detection

#H #FA #M P R MPR MDmedian MDmean MDvar

Sequence Training

No smoothing

M 287 1084 14 0.21 0.95 0.58 0 0.18 3.32

Ms 186 503 115 0.27 0.62 0.44 0 0.18 5.14

Mr 285 1051 16 0.21 0.95 0.58 0 0.09 3.98

Mrs 211 499 90 0.30 0.70 0.50 0 -0.08 5.60

With smoothing

M̂ 247 560 54 0.31 0.82 0.56 0 -0.04 5.16

M̂s 206 379 95 0.35 0.68 0.52 0 -0.11 5.97

M̂r 250 583 51 0.30 0.83 0.57 0 0.06 5.11

M̂rs 192 374 109 0.34 0.64 0.49 0 -0.03 6.01

Table C.16: Audio



C.4. Audio 265

C.4.2 Peak Classification
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Figure C.16: Peak statistics for the audio trace, from the greenDancer, and maleDancer se-

quences combined. Desired peaks, corresponding to motion events, are shown on the left, while

the figures on the right illustrate false alarms. The Parzen estimations of the densities are also

shown.
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